Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current concepts and novel targets for antiplatelet therapy

Abstract

Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.

Key points

  • Antiplatelet therapy improves prognosis in patients with cardiovascular disease.

  • Bleeding is a major complication of antiplatelet therapy and is associated with an increased risk of death.

  • A personalized antithrombotic strategy that takes into account the individual’s risk of ischaemic and bleeding events has been developed.

  • Novel targets have been identified and new drugs developed to suppress platelet-dependent thrombosis with fewer effects on haemostasis than conventional antiplatelet therapies, thus minimizing the risk of bleeding complications.

  • Targeting novel intracellular molecules might improve the efficacy and safety of antiplatelet therapy by supporting the microcirculation and functional recovery after myocardial ischaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Platelets in atherothrombosis and myocardial ischaemia.
Fig. 2: Current antiplatelet concepts for the treatment of cardiovascular diseases.
Fig. 3: Novel antiplatelet drugs targeting surface receptors.
Fig. 4: Novel intracellular antiplatelet targets.

Similar content being viewed by others

References

  1. No authors listed. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet 2, 349–360 (1988).

    Google Scholar 

  2. Antithrombotic Trialists’ (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373, 1849–1860 (2009).

    Article  Google Scholar 

  3. Schomig, A. et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N. Engl. J. Med. 334, 1084–1089 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Urban, P. et al. Randomized evaluation of anticoagulation versus antiplatelet therapy after coronary stent implantation in high-risk patients: the Multicenter Aspirin and Ticlopidine Trial after Intracoronary Stenting (MATTIS). Circulation 98, 2126–2132 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Steinhubl, S. R. et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288, 2411–2420 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Palmerini, T. et al. Bleeding-related deaths in relation to the duration of dual-antiplatelet therapy after coronary stenting. J. Am. Coll. Cardiol. 69, 2011–2022 (2017).

    Article  PubMed  Google Scholar 

  9. Gawaz, M., Langer, H. & May, A. E. Platelets in inflammation and atherogenesis. J. Clin. Invest. 115, 3378–3384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gawaz, M., Neumann, F. J., Ott, I., Schiessler, A. & Schomig, A. Platelet function in acute myocardial infarction treated with direct angioplasty. Circulation 93, 229–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Ott, I., Neumann, F. J., Gawaz, M., Schmitt, M. & Schomig, A. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation 94, 1239–1246 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Gawaz, M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc. Res. 61, 498–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Weber, C. Platelets and chemokines in atherosclerosis: partners in crime. Circ. Res. 96, 612–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 368, 2004–2013 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ziegler, M., Wang, X. & Peter, K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc. Res. 115, 1178–1188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rohlfing, A. K. et al. ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nat. Commun. 13, 1823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaplan, Z. S. & Jackson, S. P. The role of platelets in atherothrombosis. Hematol. Am. Soc. Hematol. Educ. Program. 2011, 51–61 (2011).

    Article  Google Scholar 

  19. Davi, G. & Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 357, 2482–2494 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ruggeri, Z. M. Platelets in atherothrombosis. Nat. Med. 8, 1227–1234 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Nieswandt, B. et al. Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen. EMBO J. 20, 2120–2130 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gawaz, M. & Vogel, S. Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood 122, 2550–2554 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Gawaz, M. P. et al. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J. Clin. Invest. 88, 1128–1134 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Massberg, S. et al. Platelets secrete stromal cell-derived factor 1α and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J. Exp. Med. 203, 1221–1233 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Massberg, S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 196, 887–896 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burger, P. C. & Wagner, D. D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101, 2661–2666 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Gawaz, M. et al. Vitronectin receptor (αvβ3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction. Circulation 96, 1809–1818 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Massberg, S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J. Exp. Med. 197, 41–49 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Massberg, S. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 112, 1180–1188 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bultmann, A. et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis–a possible role of fibronectin. J. Mol. Cell Cardiol. 49, 532–542 (2010).

    Article  PubMed  Google Scholar 

  32. Seizer, P. et al. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI–EMMPRIN interaction. Thromb. Haemost. 101, 682–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Schonberger, T. et al. The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice. Am. J. Physiol. Cell Physiol. 303, C757–C766 (2012).

    Article  PubMed  Google Scholar 

  34. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeibig, S. et al. Effect of the oxLDL binding protein Fc-CD68 on plaque extension and vulnerability in atherosclerosis. Circ. Res. 108, 695–703 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Chatterjee, M. et al. Regulation of oxidized platelet lipidome: implications for coronary artery disease. Eur. Heart J. 38, 1993–2005 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Siegel-Axel, D., Daub, K., Seizer, P., Lindemann, S. & Gawaz, M. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc. Res. 78, 8–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Harm, T. et al. Acute coronary syndrome is associated with a substantial change in the platelet lipidome. Cardiovasc. Res. 118, 1904–1916 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Chatterjee, M. et al. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis. 6, e1989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burgstahler, C. et al. Elevated coronary calcium scores are associated with higher residual platelet aggregation after clopidogrel treatment in patients with stable angina pectoris. Int. J. Cardiol. 135, 132–135 (2009).

    Article  PubMed  Google Scholar 

  42. Yun, K. H. et al. Relationship between platelet reactivity and culprit lesion morphology: an assessment from the ADAPT-DES intravascular ultrasound substudy. JACC Cardiovasc. Imaging 9, 849–854 (2016).

    Article  PubMed  Google Scholar 

  43. Matetzky, S. et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 109, 3171–3175 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Trip, M. D., Cats, V. M., van Capelle, F. J. & Vreeken, J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med. 322, 1549–1554 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Geisler, T. et al. Early but not late stent thrombosis is influenced by residual platelet aggregation in patients undergoing coronary interventions. Eur. Heart J. 31, 59–66 (2010).

    Article  PubMed  Google Scholar 

  46. Muller, I. et al. Prevalence of clopidogrel non-responders among patients with stable angina pectoris scheduled for elective coronary stent placement. Thromb. Haemost. 89, 783–787 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Cabeza, N. et al. Surface expression of collagen receptor Fc receptor-γ/glycoprotein VI is enhanced on platelets in type 2 diabetes and mediates release of CD40 ligand and activation of endothelial cells. Diabetes 53, 2117–2121 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Geisler, T. et al. Platelet response to clopidogrel is attenuated in diabetic patients undergoing coronary stent implantation. Diabetes Care 30, 372–374 (2007).

    Article  PubMed  Google Scholar 

  49. Dahlen, B. et al. The impact of platelet indices on clinical outcome in heart failure: results from the MyoVasc study. Esc. Heart Fail. 8, 2991–3001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Valgimigli, M. et al. Duration of antiplatelet therapy after complex percutaneous coronary intervention in patients at high bleeding risk: a MASTER DAPT trial sub-analysis. Eur. Heart J. 43, 3100–3114 (2022).

    Article  PubMed  Google Scholar 

  51. Mauri, L. et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N. Engl. J. Med. 371, 2155–2166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bonaca, M. P. et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N. Engl. J. Med. 372, 1791–1800 (2015).

    Article  PubMed  Google Scholar 

  53. Eikelboom, J. W. et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 377, 1319–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Xian, Y. et al. Association of discharge aspirin dose with outcomes after acute myocardial infarction: insights from the treatment with ADP receptor inhibitors: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome (TRANSLATE-ACS) study. Circulation 132, 174–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Mehta, S. R. et al. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet 376, 1233–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pettersen, A. A., Seljeflot, I., Abdelnoor, M. & Arnesen, H. High on-aspirin platelet reactivity and clinical outcome in patients with stable coronary artery disease: results from ASCET (Aspirin nonresponsiveness and Clopidogrel Endpoint Trial). J. Am. Heart Assoc. 1, e000703 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chung, C. J. et al. Impact of high on-aspirin platelet reactivity on outcomes following successful percutaneous coronary intervention with drug-eluting stents. Am. Heart J. 205, 77–86 (2018).

    Article  PubMed  Google Scholar 

  58. Frelinger, A. L. 3rd et al. Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance. Circulation 113, 2888–2896 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Chiang, N., Bermudez, E. A., Ridker, P. M., Hurwitz, S. & Serhan, C. N. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc. Natl Acad. Sci. USA 101, 15178–15183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. US Preventive Services Task Force. Aspirin use to prevent preeclampsia and related morbidity and mortality: US Preventive Services Task Force recommendation statement. JAMA 326, 1186–1191 (2021).

    Article  Google Scholar 

  61. Reed, G. W. et al. Effect of aspirin coadministration on the safety of celecoxib, naproxen, or ibuprofen. J. Am. Coll. Cardiol. 71, 1741–1751 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Hohlfeld, T., Saxena, A. & Schror, K. High on treatment platelet reactivity against aspirin by non-steroidal anti-inflammatory drugs – pharmacological mechanisms and clinical relevance. Thromb. Haemost. 109, 825–833 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Cuisset, T. et al. Clinical implications of very low on-treatment platelet reactivity in patients treated with thienopyridine: the POBA study (predictor of bleedings with antiplatelet drugs). JACC Cardiovasc. Interv. 6, 854–863 (2013).

    Article  PubMed  Google Scholar 

  64. Campo, G. et al. Prospective evaluation of on-clopidogrel platelet reactivity over time in patients treated with percutaneous coronary intervention relationship with gene polymorphisms and clinical outcome. J. Am. Coll. Cardiol. 57, 2474–2483 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Tantry, U. S. et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J. Am. Coll. Cardiol. 62, 2261–2273 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Bonello, L. et al. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J. Am. Coll. Cardiol. 56, 919–933 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Geisler, T. et al. The residual platelet aggregation after deployment of intracoronary stent (PREDICT) score. J. Thromb. Haemost. 6, 54–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura, M. et al. Relationship between platelet reactivity and ischemic and bleeding events after percutaneous coronary intervention in East Asian patients: 1-year results of the PENDULUM registry. J. Am. Heart Assoc. 9, e015439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kim, H. K. et al. The East Asian paradox: an updated position statement on the challenges to the current antithrombotic strategy in patients with cardiovascular disease. Thromb. Haemost. 121, 422–432 (2021).

    Article  PubMed  Google Scholar 

  70. Brandt, J. T. et al. A comparison of prasugrel and clopidogrel loading doses on platelet function: magnitude of platelet inhibition is related to active metabolite formation. Am. Heart J. 153, 66.e9–66.e16 (2007).

    Article  PubMed  Google Scholar 

  71. Alexopoulos, D. et al. Prasugrel overcomes high on-clopidogrel platelet reactivity post-stenting more effectively than high-dose (150-mg) clopidogrel: the importance of CYP2C19*2 genotyping. JACC Cardiovasc. Interv. 4, 403–410 (2011).

    Article  PubMed  Google Scholar 

  72. Wallentin, L. et al. Prasugrel achieves greater and faster P2Y12 receptor-mediated platelet inhibition than clopidogrel due to more efficient generation of its active metabolite in aspirin-treated patients with coronary artery disease. Eur. Heart J. 29, 21–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. et al. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N. Engl. J. Med. 385, 2520–2530 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Cattaneo, M., Schulz, R. & Nylander, S. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance. J. Am. Coll. Cardiol. 63, 2503–2509 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Nylander, S. et al. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J. Thromb. Haemost. 11, 1867–1876 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Huang, B. et al. Ticagrelor inhibits the NLRP3 inflammasome to protect against inflammatory disease independent of the P2Y12 signaling pathway. Cell Mol. Immunol. 18, 1278–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Sexton, T. R. et al. Ticagrelor reduces thromboinflammatory markers in patients with pneumonia. JACC Basic Transl. Sci. 3, 435–449 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Morrow, D. A. et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 366, 1404–1413 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Tricoci, P. et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N. Engl. J. Med. 366, 20–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Bonaca, M. P. et al. Acute limb ischemia and outcomes with vorapaxar in patients with peripheral artery disease: results from the trial to assess the effects of vorapaxar in preventing heart attack and stroke in patients with atherosclerosis-thrombolysis in myocardial infarction 50 (TRA2°P-TIMI 50). Circulation 133, 997–1005 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Bonaca, M. P. et al. Peripheral revascularization in patients with peripheral artery disease with vorapaxar: insights from the TRA 2°P-TIMI 50 trial. JACC Cardiovasc. Interv. 9, 2157–2164 (2016).

    Article  PubMed  Google Scholar 

  82. Cavender, M. A. et al. Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: findings from the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-TIMI 50 trial. Circulation 131, 1047–1053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu, H., Bonaca, M. P., Goodrich, E., Scirica, B. M. & Morrow, D. A. Efficacy and safety of vorapaxar for secondary prevention in low body weight in patients with atherosclerosis: analyses from the TRA 2°P-TIMI 50 trial. Eur. Heart J. Acute Cardiovasc. Care 10, 190–199 (2019).

    Article  Google Scholar 

  84. Morrow, D. A. et al. Efficacy and safety of vorapaxar in patients with prior ischemic stroke. Stroke 44, 691–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Collet, J. P. et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42, 1289–1367 (2021).

    Article  PubMed  Google Scholar 

  86. Gargiulo, G. et al. Cangrelor, tirofiban, and chewed or standard prasugrel regimens in patients with ST-segment-elevation myocardial infarction: primary results of the FABOLUS-FASTER trial. Circulation 142, 441–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bledzka, K., Smyth, S. S. & Plow, E. F. Integrin αIIbβ3: from discovery to efficacious therapeutic target. Circ. Res. 112, 1189–1200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu, F. et al. Efficacy and safety of a bridging strategy that uses intravenous platelet glycoprotein receptor inhibitors for patients undergoing surgery after coronary stent implantation: a meta-analysis. BMC Cardiovasc. Disord. 22, 125 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Merlini, P. A. et al. Thrombocytopenia caused by abciximab or tirofiban and its association with clinical outcome in patients undergoing coronary stenting. Circulation 109, 2203–2206 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. The PURSUIT Trial Investigators. Inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute coronary syndromes. N. Engl. J. Med. 339, 436–443 (1998).

    Article  Google Scholar 

  91. The ESPRIT Investigators. Novel dosing regimen of eptifibatide in planned coronary stent implantation (ESPRIT): a randomised, placebo-controlled trial. Lancet 356, 2037–2044 (2000).

    Article  Google Scholar 

  92. Valgimigli, M. et al. Tirofiban as adjunctive therapy for acute coronary syndromes and percutaneous coronary intervention: a meta-analysis of randomized trials. Eur. Heart J. 31, 35–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Siebler, M. et al. Safety of tirofiban in acute ischemic stroke: SaTIS trial. Stroke 42, 2388–2392 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Fu, Z., Xu, C., Liu, X., Wang, Z. & Gao, L. Safety and efficacy of tirofiban in acute ischemic stroke patients receiving endovascular treatment: a meta-analysis. Cerebrovasc. Dis. 49, 442–450 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Steg, P. G. et al. Effect of cangrelor on periprocedural outcomes in percutaneous coronary interventions: a pooled analysis of patient-level data. Lancet 382, 1981–1992 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Droppa, M. et al. Cangrelor in cardiogenic shock and after cardiopulmonary resuscitation: a global, multicenter, matched pair analysis with oral P2Y12 inhibition from the IABP-SHOCK II trial. Resuscitation 137, 205–212 (2019).

    Article  PubMed  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03551964 (2022).

  98. Angiolillo, D. J. et al. Bridging antiplatelet therapy with cangrelor in patients undergoing cardiac surgery: a randomized controlled trial. JAMA 307, 265–274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McNeil, J. J. et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N. Engl. J. Med. 379, 1509–1518 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. ASCEND Study Collaborative Group. Effects of aspirin for primary prevention in persons with diabetes mellitus. N. Engl. J. Med. 379, 1529–1539 (2018).

    Article  Google Scholar 

  101. Gaziano, J. M. et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet 392, 1036–1046 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yusuf, S. et al. Polypill with or without aspirin in persons without cardiovascular disease. N. Engl. J. Med. 384, 216–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Visseren, F. L. J. et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    Article  PubMed  Google Scholar 

  104. Aggarwal, D. et al. P2Y12 inhibitor versus aspirin monotherapy for secondary prevention of cardiovascular events: meta-analysis of randomized trials. Eur. Heart J. Open 2, oeac019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schupke, S. et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N. Engl. J. Med. 381, 1524–1534 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Silvain, J. et al. Ticagrelor versus clopidogrel in elective percutaneous coronary intervention (ALPHEUS): a randomised, open-label, phase 3b trial. Lancet 396, 1737–1744 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Knuuti, J. et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2020).

    Article  PubMed  Google Scholar 

  108. Montalescot, G. et al. Pretreatment with prasugrel in non-ST-segment elevation acute coronary syndromes. N. Engl. J. Med. 369, 999–1010 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Tarantini, G. et al. Timing of oral P2Y12 inhibitor administration in patients with non-ST-segment elevation acute coronary syndrome. J. Am. Coll. Cardiol. 76, 2450–2459 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Marquis-Gravel, G. et al. Post-discharge bleeding and mortality following acute coronary syndromes with or without PCI. J. Am. Coll. Cardiol. 76, 162–171 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Cao, D., Chandiramani, R., Chiarito, M., Claessen, B. E. & Mehran, R. Evolution of antithrombotic therapy in patients undergoing percutaneous coronary intervention: a 40-year journey. Eur. Heart J. 42, 339–351 (2021).

    Article  PubMed  Google Scholar 

  112. Costa, F. et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials. Lancet 389, 1025–1034 (2017).

    Article  PubMed  Google Scholar 

  113. Urban, P. et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention. Circulation 140, 240–261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sibbing, D. et al. Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet 390, 1747–1757 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Cuisset, T. et al. Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (Timing of Platelet Inhibition after Acute Coronary Syndrome) randomized study. Eur. Heart J. 38, 3070–3078 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Claassens, D. M. F. et al. A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI. N. Engl. J. Med. 381, 1621–1631 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Gimbel, M. et al. Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): the randomised, open-label, non-inferiority trial. Lancet 395, 1374–1381 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Kim, H. S. et al. Durable polymer versus biodegradable polymer drug-eluting stents after percutaneous coronary intervention in patients with acute coronary syndrome: the Host-Reduce-Polytech-ACS Trial. Circulation 143, 1081–1091 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Kim, C. J. et al. Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-inferiority, randomised trial. Lancet 398, 1305–1316 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Kuno, T. et al. Comparison of unguided de-escalation versus guided selection of dual antiplatelet therapy after acute coronary syndrome: a systematic review and network meta-analysis. Circ. Cardiovasc. Interv. 15, e011990 (2022).

    Article  PubMed  Google Scholar 

  121. Galli, M. et al. Guided versus standard antiplatelet therapy in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Lancet 397, 1470–1483 (2021).

    Article  PubMed  Google Scholar 

  122. Vranckx, P. et al. Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial. Lancet 392, 940–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Mehran, R. et al. Ticagrelor with or without aspirin in high-risk patients after PCI. N. Engl. J. Med. 381, 2032–2042 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, B. K. et al. Effect of ticagrelor monotherapy vs ticagrelor with aspirin on major bleeding and cardiovascular events in patients with acute coronary syndrome: the TICO randomized clinical trial. JAMA 323, 2407–2416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hong, S. J. et al. 1-Month dual-antiplatelet therapy followed by aspirin monotherapy after polymer-free drug-coated stent implantation: one-month DAPT trial. JACC Cardiovasc. Interv. 14, 1801–1811 (2021).

    Article  PubMed  Google Scholar 

  126. Kim, B. K. et al. A new strategy for discontinuation of dual antiplatelet therapy: the RESET trial (REal Safety and Efficacy of 3-month dual antiplatelet Therapy following Endeavor zotarolimus-eluting stent implantation). J. Am. Coll. Cardiol. 60, 1340–1348 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Feres, F. et al. Three vs twelve months of dual antiplatelet therapy after zotarolimus-eluting stents: the OPTIMIZE randomized trial. JAMA 310, 2510–2522 (2013).

    CAS  PubMed  Google Scholar 

  128. Watanabe, H. et al. Comparison of clopidogrel monotherapy after 1 to 2 months of dual antiplatelet therapy with 12 months of dual antiplatelet therapy in patients with acute coronary syndrome: the STOPDAPT-2 ACS randomized clinical trial. JAMA Cardiol. 7, 407–417 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bonaca, M. P. et al. Patient selection for long-term secondary prevention with ticagrelor: insights from PEGASUS-TIMI 54. Eur. Heart J. 43, 5037–5044 (2022).

    Article  PubMed  Google Scholar 

  130. Polzin, A. et al. Noncanonical effects of oral thrombin and factor Xa inhibitors in platelet activation and arterial thrombosis. Thromb. Haemost. 121, 122–130 (2021).

    Article  PubMed  Google Scholar 

  131. Petzold, T. et al. Rivaroxaban reduces arterial thrombosis by inhibition of FXa-driven platelet activation via protease activated receptor-1. Circ. Res. 126, 486–500 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Steffel, J. et al. The COMPASS trial: net clinical benefit of low-dose rivaroxaban plus aspirin as compared with aspirin in patients with chronic vascular disease. Circulation 142, 40–48 (2020).

    Article  PubMed  Google Scholar 

  133. Anand, S. S. et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 391, 219–229 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Bonaca, M. P. et al. Rivaroxaban in peripheral artery disease after revascularization. N. Engl. J. Med. 382, 1994–2004 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Versteeg, H. H., Heemskerk, J. W., Levi, M. & Reitsma, P. H. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Gurbel, P. A., Kuliopulos, A. & Tantry, U. S. G-protein-coupled receptors signaling pathways in new antiplatelet drug development. Arterioscler. Thromb. Vasc. Biol. 35, 500–512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rey, M. et al. The reversible P2Y12 antagonist ACT-246475 causes significantly less blood loss than ticagrelor at equivalent antithrombotic efficacy in rat. Pharmacol. Res. Perspect. 5, e00338 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Storey, R. F. et al. Pharmacodynamics, pharmacokinetics, and safety of single-dose subcutaneous administration of selatogrel, a novel P2Y12 receptor antagonist, in patients with chronic coronary syndromes. Eur. Heart J. 41, 3132–3140 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Sinnaeve, P. et al. Subcutaneous selatogrel inhibits platelet aggregation in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 75, 2588–2597 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04957719 (2023).

  141. Coller, B. S. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J. Clin. Invest. 100, S57–S60 (1997).

    CAS  PubMed  Google Scholar 

  142. Coller, B. S. Blockade of platelet GPIIb/IIIa receptors as an antithrombotic strategy. Circulation 92, 2373–2380 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. Ferguson, J. J., Waly, H. M. & Wilson, J. M. Fundamentals of coagulation and glycoprotein IIb/IIIa receptor inhibition. Eur. Heart J. 19, D3–D9 (1998).

    CAS  PubMed  Google Scholar 

  144. Batchelor, W. B. et al. Randomized COMparison of platelet inhibition with abciximab, tiRofiban and eptifibatide during percutaneous coronary intervention in acute coronary syndromes: the COMPARE trial. Circulation 106, 1470–1476 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Li, J. et al. RUC-4: a novel αIIbβ3 antagonist for prehospital therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 34, 2321–2329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hohmann, J. D. et al. Delayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: breaking the link between antithrombotic potency and bleeding? Blood 121, 3067–3075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nieswandt, B. & Watson, S. P. Platelet-collagen interaction: is GPVI the central receptor? Blood 102, 449–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Massberg, S. et al. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J. 18, 397–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Borst, O. & Gawaz, M. Glycoprotein VI – novel target in antiplatelet medication. Pharmacol. Ther. 217, 107630 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Ebrahim, M. et al. Dimeric glycoprotein VI binds to collagen but not to fibrin. Thromb. Haemost. 118, 351–361 (2018).

    Article  PubMed  Google Scholar 

  151. Ungerer, M. et al. Novel antiplatelet drug revacept (dimeric glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation 123, 1891–1899 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Schupke, S. et al. Revacept, a novel inhibitor of platelet adhesion, in patients undergoing elective PCI – design and rationale of the randomized ISAR-PLASTER trial. Thromb. Haemost. 119, 1539–1545 (2019).

    Article  PubMed  Google Scholar 

  153. Mayer, K. et al. Efficacy and safety of revacept, a novel lesion-directed competitive antagonist to platelet glycoprotein VI, in patients undergoing elective percutaneous coronary intervention for stable ischemic heart disease: the randomized, double-blind, placebo-controlled ISAR-PLASTER phase 2 trial. JAMA Cardiol. 6, 753–761 (2021).

    Article  PubMed  Google Scholar 

  154. Uphaus, T. et al. Revacept, an inhibitor of platelet adhesion in symptomatic carotid stenosis: a multicenter randomized phase II trial. Stroke 53, 2718–2729 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Goebel, S. et al. The GPVI-Fc fusion protein revacept improves cerebral infarct volume and functional outcome in stroke. PLoS ONE 8, e66960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Degen, H. et al. ADPase CD39 fused to glycoprotein VI-Fc boosts local antithrombotic effects at vascular lesions. J. Am. Heart Assoc. 6, e005991 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Nestele, J. A. et al. Characterization of GPVI- or GPVI-CD39-coated nanoparticles and their impact on in vitro thrombus formation. Int. J. Mol. Sci. 23, 11 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Baumer, Y. et al. The recombinant bifunctional protein αCD133-GPVI promotes repair of the infarcted myocardium in mice. J. Thromb. Haemost. 10, 1152–1164 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Lebozec, K., Jandrot-Perrus, M., Avenard, G., Favre-Bulle, O. & Billiald, P. Design, development and characterization of ACT017, a humanized Fab that blocks platelet’s glycoprotein VI function without causing bleeding risks. mAbs 9, 945–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wichaiyo, S., Parichatikanond, W. & Rattanavipanon, W. Glenzocimab: a GPVI (glycoprotein VI)-targeted potential antiplatelet agent for the treatment of acute ischemic stroke. Stroke 53, 3506–3513 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05070260 (2022).

  162. Ruggeri, Z. M. The role of von Willebrand factor in thrombus formation. Thromb. Res. 120, S5–S9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Reininger, A. J. et al. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 107, 3537–3545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gresele, P. & Momi, S. in Antiplatelet Agents (eds Gresele, P., Born, G., Patrono, C. & Page, C.) 287–309 (Springer, 2012).

  165. De Meyer, S. F. et al. Binding of von Willebrand factor to collagen and glycoprotein Ibalpha, but not to glycoprotein IIb/IIIa, contributes to ischemic stroke in mice–brief report. Arterioscler. Thromb. Vasc. Biol. 30, 1949–1951 (2010).

    Article  PubMed  Google Scholar 

  166. Kleinschnitz, C. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 115, 2323–2330 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Tardif, J. C. et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J. Am. Coll. Cardiol. 61, 2048–2055 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Chatterjee, M., Rath, D. & Gawaz, M. Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem. Soc. Trans. 43, 720–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Witte, A. et al. The chemokine CXCL14 mediates platelet function and migration via direct interaction with CXCR4. Cardiovasc. Res. 117, 903–917 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Borst, O. et al. The inflammatory chemokine CXC motif ligand 16 triggers platelet activation and adhesion via CXC motif receptor 6-dependent phosphatidylinositide 3-kinase/Akt signaling. Circ. Res. 111, 1297–1307 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Rath, D. et al. Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. Eur. Heart J. 35, 386–394 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Chatterjee, M. et al. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling. Circ. Res. 115, 939–949 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Jackson, S. P. et al. PI3-kinase p110β: a new target for antithrombotic therapy. Nat. Med. 11, 507–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Cosemans, J. M. et al. Continuous signaling via PI3K isoforms β and γ is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood 108, 3045–3052 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Gilio, K. et al. Non-redundant roles of phosphoinositide 3-kinase isoforms α and β in glycoprotein VI-induced platelet signaling and thrombus formation. J. Biol. Chem. 284, 33750–33762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gratacap, M. P. et al. Regulation and roles of PI3Kβ, a major actor in platelet signaling and functions. Adv. Enzym. Regul. 51, 106–116 (2011).

    Article  CAS  Google Scholar 

  177. Canobbio, I. et al. Genetic evidence for a predominant role of PI3Kβ catalytic activity in ITAM- and integrin-mediated signaling in platelets. Blood 114, 2193–2196 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Laurent, P. A. et al. Platelet PI3Kβ and GSK3 regulate thrombus stability at a high shear rate. Blood 125, 881–888 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Martin, V. et al. Deletion of the p110β isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 115, 2008–2013 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Zheng, Z. et al. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922). Eur. J. Med. Chem. 122, 339–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Nylander, S. et al. Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J. Thromb. Haemost. 10, 2127–2136 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Nylander, S., Wagberg, F., Andersson, M., Skarby, T. & Gustafsson, D. Exploration of efficacy and bleeding with combined phosphoinositide 3-kinase β inhibition and aspirin in man. J. Thromb. Haemost. 13, 1494–1502 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05363397 (2022).

  184. Chen, X. et al. PDK1 regulates platelet activation and arterial thrombosis. Blood 121, 3718–3726 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Munzer, P. et al. PDK1 determines collagen-dependent platelet Ca2+ signaling and is critical to development of ischemic stroke in vivo. Arterioscler. Thromb. Vasc. Biol. 36, 1507–1516 (2016).

    Article  PubMed  Google Scholar 

  186. Geue, S. et al. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood 134, 1847–1858 (2019).

    Article  PubMed  Google Scholar 

  187. Dangelmaier, C. et al. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb. Haemost. 111, 508–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Borst, O. et al. The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood 119, 251–261 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Braun, A. et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113, 2056–2063 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Bergmeier, W. et al. R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood 113, 675–678 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lang, F. et al. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol. Rev. 86, 1151–1178 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Walker, B. et al. Impact of the serum- and glucocorticoid-inducible kinase 1 on platelet dense granule biogenesis and secretion. J. Thromb. Haemost. 13, 1325–1334 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Piazza, F. et al. Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26, 1174–1179 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Nakanishi, K. et al. Phosphoinositide 3-kinase induced activation and cytoskeletal translocation of protein kinase CK2 in protease activated receptor 1-stimulated platelets. Thromb. Res. 126, 511–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Munzer, P. et al. CK2β regulates thrombopoiesis and Ca2+-triggered platelet activation in arterial thrombosis. Blood 130, 2774–2785 (2017).

    Article  PubMed  Google Scholar 

  196. Ryu, S. Y. & Kim, S. Evaluation of CK2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) in regulation of platelet function. Eur. J. Pharmacol. 720, 391–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Ampofo, E. et al. Role of protein kinase CK2 in the dynamic interaction of platelets, leukocytes and endothelial cells during thrombus formation. Thromb. Res. 136, 996–1006 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Ezumi, Y., Shindoh, K., Tsuji, M. & Takayama, H. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor γ chain complex on human platelets. J. Exp. Med. 188, 267–276 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Suzuki-Inoue, K. et al. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J. Biol. Chem. 277, 21561–21566 (2002).

    Article  CAS  PubMed  Google Scholar 

  200. Quek, L. S., Bolen, J. & Watson, S. P. A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr. Biol. 8, 1137–1140 (1998).

    Article  CAS  PubMed  Google Scholar 

  201. Andre, P. et al. Critical role for Syk in responses to vascular injury. Blood 118, 5000–5010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. van Eeuwijk, J. M. et al. The novel oral Syk inhibitor, Bl1002494, protects mice from arterial thrombosis and thromboinflammatory brain infarction. Arterioscler. Thromb. Vasc. Biol. 36, 1247–1253 (2016).

    Article  PubMed  Google Scholar 

  203. Bussel, J. et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: results of two phase 3, randomized, placebo-controlled trials. Am. J. Hematol. 93, 921–930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Spalton, J. C. et al. The novel Syk inhibitor R406 reveals mechanistic differences in the initiation of GPVI and CLEC-2 signaling in platelets. J. Thromb. Haemost. 7, 1192–1199 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Harbi, M. H. et al. Antithrombotic effects of fostamatinib in combination with conventional antiplatelet drugs. Int. J. Mol. Sci. 23, 6982 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Busygina, K. et al. Oral bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 131, 2605–2616 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Levade, M. et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood 124, 3991–3995 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Brown, J. R. et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br. J. Haematol. 184, 558–569 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. von Hundelshausen, P. & Siess, W. Bleeding by Bruton tyrosine kinase-inhibitors: dependency on drug type and disease. Cancers 13, 1103 (2021).

    Article  Google Scholar 

  210. Smith, C. W. et al. The Btk inhibitor AB-95-LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and platelet procoagulant activity. J. Thromb. Haemost. 20, 2939–2952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Denzinger, V. et al. Optimizing platelet GPVI inhibition versus haemostatic impairment by the Btk inhibitors ibrutinib, acalabrutinib, ONO/GS-4059, BGB-3111 and evobrutinib. Thromb. Haemost. 119, 397–406 (2019).

    Article  PubMed  Google Scholar 

  212. Duan, R. et al. Effects of the Btk-inhibitors remibrutinib (LOU064) and rilzabrutinib (PRN1008) with varying Btk selectivity over tec on platelet aggregation and in vitro bleeding time. Front. Cardiovasc. Med. 8, 749022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Manke, M. C. et al. ANXA7 regulates platelet lipid metabolism and Ca2+ release in arterial thrombosis. Circ. Res. 129, 494–507 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Yeung, J. et al. 12-lipoxygenase activity plays an important role in PAR4 and GPVI-mediated platelet reactivity. Thromb. Haemost. 110, 569–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Yeung, J. et al. Platelet 12-LOX is essential for FcγRIIa-mediated platelet activation. Blood 124, 2271–2279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Peng, B. et al. Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome. Blood 132, e1–e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Coffey, M. J. et al. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis. Circ. Res. 94, 1598–1605 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Adili, R. et al. First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis. Arterioscler. Thromb. Vasc. Biol. 37, 1828–1839 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li, H. et al. Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E/ mice. Cell Death Dis. 4, e806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Smolenski, A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J. Thromb. Haemost. 10, 167–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  221. Massberg, S. et al. Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J. Exp. Med. 189, 1255–1264 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wen, L. et al. A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nat. Commun. 9, 4301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Sun, B. et al. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal. 19, 1765–1771 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Gresele, P. & Momi, S. Novel approaches to antiplatelet therapy. Biochem. Pharmacol. 206, 115297 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Makhoul, S. et al. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide 76, 71–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Toyoda, K. et al. Dual antiplatelet therapy using cilostazol for secondary prevention in patients with high-risk ischaemic stroke in Japan: a multicentre, open-label, randomised controlled trial. Lancet Neurol. 18, 539–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Kim, B. J. et al. Cilostazol versus aspirin in ischemic stroke patients with high-risk cerebral hemorrhage: subgroup analysis of the PICASSO trial. Stroke 51, 931–937 (2020).

    Article  PubMed  Google Scholar 

  228. Gresele, P., Momi, S. & Guglielmini, G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. Biochem. Pharmacol. 166, 300–312 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. The ESPRIT Study Group. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Lancet 367, 1665–1673 (2006).

    Article  Google Scholar 

  230. Wallis, R. M., Corbin, J. D., Francis, S. H. & Ellis, P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am. J. Cardiol. 83 (Suppl. 1), 3–12 (1999).

    Article  Google Scholar 

  231. Mullershausen, F. et al. Rapid nitric oxide-induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme. J. Cell Biol. 155, 271–278 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wilson, L. S., Elbatarny, H. S., Crawley, S. W., Bennett, B. M. & Maurice, D. H. Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proc. Natl Acad. Sci. USA 105, 13650–13655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Vanschoonbeek, K. et al. Initiating and potentiating role of platelets in tissue factor-induced thrombin generation in the presence of plasma: subject-dependent variation in thrombogram characteristics. J. Thromb. Haemost. 2, 476–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  234. Reiss, C. et al. The sGC stimulator riociguat inhibits platelet function in washed platelets but not in whole blood. Br. J. Pharmacol. 172, 5199–5210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Jordan, P. A. et al. A role for the thiol isomerase protein ERP5 in platelet function. Blood 105, 1500–1507 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Essex, D. W. & Li, M. Protein disulphide isomerase mediates platelet aggregation and secretion. Br. J. Haematol. 104, 448–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  237. Lahav, J. et al. Sustained integrin ligation involves extracellular free sulfhydryls and enzymatically catalyzed disulfide exchange. Blood 100, 2472–2478 (2002).

    Article  CAS  PubMed  Google Scholar 

  238. Kim, K. et al. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood 122, 1052–1061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Cho, J., Furie, B. C., Coughlin, S. R. & Furie, B. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J. Clin. Invest. 118, 1123–1131 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Jasuja, R. et al. Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J. Clin. Invest. 122, 2104–2113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lin, L. et al. Quercetin-3-rutinoside inhibits protein disulfide isomerase by binding to its b′x domain. J. Biol. Chem. 290, 23543–23552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Stopa, J. D. et al. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI Insight 2, e89373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Zwicker, J. I. et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 4, 125851 (2019).

    Article  PubMed  Google Scholar 

  244. Chen, S. et al. Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection. Pharmacol. Res. 167, 105540 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Flaumenhaft, R., Furie, B. & Zwicker, J. I. Therapeutic implications of protein disulfide isomerase inhibition in thrombotic disease. Arterioscler. Thromb. Vasc. Biol. 35, 16–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  246. Tscharre, M., Michelson, A. D. & Gremmel, T. Novel antiplatelet agents in cardiovascular disease. J. Cardiovasc. Pharmacol. Ther. 25, 191–200 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Yang, W. et al. Discovery of 4-aryl-7-hydroxyindoline-based P2Y1 antagonists as novel antiplatelet agents. J. Med. Chem. 57, 6150–6164 (2014).

    Article  CAS  PubMed  Google Scholar 

  248. Bird, J. E. et al. A platelet target for venous thrombosis? P2Y1 deletion or antagonism protects mice from vena cava thrombosis. J. Thromb. Thrombolysis 34, 199–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  249. Smolensky Koganov, E. et al. GLS-409, an antagonist of both P2Y1 and P2Y12, potently inhibits canine coronary artery thrombosis and reversibly inhibits human platelet activation. Sci. Rep. 8, 14529 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Delesque-Touchard, N. et al. SAR216471, an alternative to the use of currently available P2Y12 receptor inhibitors? Thromb. Res. 134, 693–703 (2014).

    Article  CAS  PubMed  Google Scholar 

  251. Bach, P. et al. Lead optimization of ethyl 6-aminonicotinate acyl sulfonamides as antagonists of the P2Y12 receptor. separation of the antithrombotic effect and bleeding for candidate drug AZD1283. J. Med. Chem. 56, 7015–7024 (2013).

    Article  CAS  PubMed  Google Scholar 

  252. Gurbel, P. A. et al. Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 36, 189–197 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wilson, S. J. et al. PAR4 (protease-activated receptor 4) antagonism with BMS-986120 inhibits human ex vivo thrombus formation. Arterioscler. Thromb. Vasc. Biol. 38, 448–456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Meah, M. N. et al. Antithrombotic effects of combined PAR (protease-activated receptor)-4 antagonism and factor Xa inhibition. Arterioscler. Thromb. Vasc. Biol. 40, 2678–2685 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lin, Y. C. et al. Selective inhibition of PAR4 (protease-activated receptor 4)-mediated platelet activation by a synthetic nonanticoagulant heparin analog. Arterioscler. Thromb. Vasc. Biol. 39, 694–703 (2019).

    Article  CAS  PubMed  Google Scholar 

  256. Billiald, P. et al. Targeting platelet GPVI with glenzocimab: a novel mechanism for inhibition. Blood Adv. https://doi.org/10.1182/bloodadvances.2022007863 (2022).

    Article  PubMed Central  Google Scholar 

  257. Voors-Pette, C. et al. Safety and tolerability, pharmacokinetics, and pharmacodynamics of ACT017, an antiplatelet GPVI (glycoprotein VI) Fab. Arterioscler. Thromb. Vasc. Biol. 39, 956–964 (2019).

    Article  CAS  PubMed  Google Scholar 

  258. Renaud, L. et al. Population pharmacokinetic/pharmacodynamic modeling of glenzocimab (ACT017) a glycoprotein VI inhibitor of collagen-induced platelet aggregation. J. Clin. Pharmacol. 60, 1198–1208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Chang, C. H. et al. Trowaglerix venom polypeptides as a novel antithrombotic agent by targeting immunoglobulin-like domains of glycoprotein VI in platelet. Arterioscler. Thromb. Vasc. Biol. 37, 1307–1314 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Kageyama, S. et al. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arterioscler. Thromb. Vasc. Biol. 22, 187–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  261. Wu, D. et al. Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood 99, 3623–3628 (2002).

    Article  CAS  PubMed  Google Scholar 

  262. Gilbert, J. C. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 116, 2678–2686 (2007).

    Article  CAS  PubMed  Google Scholar 

  263. Scully, M. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med. 380, 335–346 (2019).

    Article  CAS  PubMed  Google Scholar 

  264. Knoebl, P. et al. Efficacy and safety of open-label caplacizumab in patients with exacerbations of acquired thrombotic thrombocytopenic purpura in the HERCULES study. J. Thromb. Haemost. 18, 479–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  265. Peyvandi, F. et al. Caplacizumab prevents refractoriness and mortality in acquired thrombotic thrombocytopenic purpura: integrated analysis. Blood Adv. 5, 2137–2141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Callewaert, F. et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood 120, 3603–3610 (2012).

    Article  CAS  PubMed  Google Scholar 

  267. Wu, D., Meiring, M., Kotze, H. F., Deckmyn, H. & Cauwenberghs, N. Inhibition of platelet glycoprotein Ib, glycoprotein IIb/IIIa, or both by monoclonal antibodies prevents arterial thrombosis in baboons. Arterioscler. Thromb. Vasc. Biol. 22, 323–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  268. Li, T. T. et al. A novel snake venom-derived GPIb antagonist, anfibatide, protects mice from acute experimental ischaemic stroke and reperfusion injury. Br. J. Pharmacol. 172, 3904–3916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Nicolson, P. L. R. et al. Inhibition of Btk by Btk-specific concentrations of ibrutinib and acalabrutinib delays but does not block platelet aggregation mediated by glycoprotein VI. Haematologica 103, 2097–2108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Goldmann, L. et al. Oral bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): a new option in HIT? Blood Adv. 3, 4021–4033 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Montalban, X. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 380, 2406–2417 (2019).

    Article  CAS  PubMed  Google Scholar 

  272. Kamel, S. et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia 29, 783–787 (2015).

    Article  CAS  PubMed  Google Scholar 

  273. Gresele, P., Momi, S. & Falcinelli, E. Anti-platelet therapy: phosphodiesterase inhibitors. Br. J. Clin. Pharmacol. 72, 634–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Feijge, M. A., Ansink, K., Vanschoonbeek, K. & Heemskerk, J. W. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3. Biochem. Pharmacol. 67, 1559–1567 (2004).

    Article  CAS  PubMed  Google Scholar 

  275. Ghofrani, H. A., Simonneau, G. & Rubin, L. J. Riociguat for pulmonary hypertension. N. Engl. J. Med. 369, 2268 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Castor (Eberhard Karls University of Tübingen, Germany) for help in the preparation of this article and M.-C. Manke (Eberhard Karls University of Tübingen, Germany) for help in preparing Fig. 4 for initial submission.

Author information

Authors and Affiliations

Authors

Contributions

M.G. discussed the content of the Review. All authors contributed to researching data for the article, and writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Meinrad Gawaz.

Ethics declarations

Competing interests

M.G. is the co-inventor of Revacept and is a co-founder of the biotechnology company AdvanceCor. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawaz, M., Geisler, T. & Borst, O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 20, 583–599 (2023). https://doi.org/10.1038/s41569-023-00854-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00854-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research