Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology and modifiable risk factors for atrial fibrillation

An Author Correction to this article was published on 17 January 2023

This article has been updated

Abstract

The global prevalence of atrial fibrillation (AF) has increased substantially over the past three decades and is currently approximately 60 million cases. Incident AF and its clinical consequences are largely the result of risk factors that can be modified by lifestyle changes. In this Review, we provide evidence that the lifetime risk of AF is modified not only by sex and race but also through the clinical risk factor and comorbidity burden of individual patients. We begin by summarizing the epidemiology of AF, focusing on non-modifiable and modifiable risk factors, as well as targets and strategies for the primary prevention of AF. Furthermore, we evaluate the role of modifiable risk factors in the secondary prevention of AF as well as the potential effects of risk factor interventions on the frequency and severity of subsequent AF episodes. We end the Review by proposing strategies that require evaluation as well as global policy changes that are needed for the prevention of incident AF and the management of recurrent episodes in patients already affected by AF.

Key points

  • The global prevalence of atrial fibrillation (AF) is approximately 60 million cases and contributes to >8 million disability-adjusted life years.

  • The lifetime risk of AF is approximately 33%, with estimates modified by patient-level factors such as age, sex, race and burden of clinical risk factors.

  • Modifiable risk factors, including hypertension, type 2 diabetes mellitus and physical inactivity, increase the lifetime risk of AF, independent of genetic risk.

  • Novel risk factors for AF include epigenetic markers of biological age and body composition.

  • Evidence is accumulating that risk factor interventions reduce incident AF and have a central role in the secondary prevention of AF episodes.

  • Future research should focus on risk factor management for the primary and secondary prevention of AF and major policy changes to reduce the global burden of AF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increase in DALYs due to atrial fibrillation and the contribution of modifiable risk factors to atrial fibrillation-related DALYs between 1990 and 2019.
Fig. 2: Risk factors for atrial fibrillation and their associated mechanisms.

Similar content being viewed by others

Change history

References

  1. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Odutayo, A. et al. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis. BMJ 354, i4482 (2016).

    Article  PubMed  Google Scholar 

  3. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  4. Schnabel, R. B. et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386, 154–162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lloyd-Jones, D. M. et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110, 1042–1046 (2004).

    Article  PubMed  Google Scholar 

  6. Heeringa, J. et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27, 949–953 (2006).

    Article  PubMed  Google Scholar 

  7. Rodriguez, C. J. et al. Atrial fibrillation incidence and risk factors in relation to race-ethnicity and the population attributable fraction of atrial fibrillation risk factors: the Multi-Ethnic Study of Atherosclerosis. Ann. Epidemiol. 25, 71–76 (2015).

    Article  PubMed  Google Scholar 

  8. Alonso, A. et al. Incidence of atrial fibrillation in whites and African-Americans: the Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J. 158, 111–117 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ugowe, F. E., Jackson, L. R. II & Thomas, K. L. Racial and ethnic differences in the prevalence, management, and outcomes in patients with atrial fibrillation: a systematic review. Heart Rhythm 15, 1337–1345 (2018).

    Article  PubMed  Google Scholar 

  10. Martinez, C. et al. Increasing incidence of non-valvular atrial fibrillation in the UK from 2001 to 2013. Heart 101, 1748–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Guo, Y. et al. Prevalence, incidence, and lifetime risk of atrial fibrillation in China: new insights into the global burden of atrial fibrillation. Chest 147, 109–119 (2015).

    Article  PubMed  Google Scholar 

  12. Mou, L. et al. Lifetime risk of atrial fibrillation by race and socioeconomic status: ARIC study (Atherosclerosis Risk in Communities). Circ. Arrhythm. Electrophysiol. 11, e006350 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Staerk, L. et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: cohort study based on longitudinal data from the Framingham Heart Study. BMJ 361, k1453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Magnussen, C. et al. Sex Differences and similarities in atrial fibrillation epidemiology, risk factors, and mortality in community cohorts: results from the BiomarCaRE consortium (Biomarker for Cardiovascular Risk assessment in Europe). Circulation 136, 1588–1597 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alonso, A. et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J. Am. Heart Assoc. 2, e000102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huxley, R. R. et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 123, 1501–1508 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chamberlain, A. M. et al. Metabolic syndrome and incidence of atrial fibrillation among blacks and whites in the Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J. 159, 850–856 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weng, L.-C. et al. Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation 137, 1027–1038 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Di Benedetto, L., Michels, G., Luben, R., Khaw, K.-T. & Pfister, R. Individual and combined impact of lifestyle factors on atrial fibrillation in apparently healthy men and women: the EPIC-Norfolk prospective population study. Eur. J. Prev. Cardiol. 25, 1374–1383 (2018).

    Article  PubMed  Google Scholar 

  20. Larsson, S. C., Drca, N., Jensen-Urstad, M. & Wolk, A. Combined impact of healthy lifestyle factors on risk of atrial fibrillation: Prospective study in men and women. Int. J. Cardiol. 203, 46–49 (2016).

    Article  PubMed  Google Scholar 

  21. Lee, S.-R. et al. Association between clustering of unhealthy lifestyle factors and risk of new-onset atrial fibrillation: a nationwide population-based study. Sci. Rep. 10, 19224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, Y. et al. Association between modifiable lifestyle and the prevalence of atrial fibrillation in a Chinese population: based on the cardiovascular health score. Clin. Cardiol. 40, 1061–1067 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nishikawa, T. et al. Association between cardiovascular health and incident atrial fibrillation in the general Japanese population aged ≥40 years. Nutrients 13, 3201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lloyd-Jones, D. M. et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 121, 586–613 (2010).

    Article  PubMed  Google Scholar 

  25. Garg, P. K. et al. American Heart Association’s life simple 7 and risk of atrial fibrillation in a population without known cardiovascular disease: the ARIC (atherosclerosis risk in communities) study. J. Am. Heart Assoc. 7, e008424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ogunmoroti, O. et al. Life’s Simple 7 and the risk of atrial fibrillation: the multi-ethnic study of atherosclerosis. Atherosclerosis 275, 174–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Garg, P. K. et al. Usefulness of the American Heart Association’s life simple 7 to predict the risk of atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke [REGARDS] study). Am. J. Cardiol. 121, 199–204 (2018).

    Article  PubMed  Google Scholar 

  28. Lloyd-Jones, D. M. et al. Life’s essential 8: updating and enhancing the American Heart Association’s construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation 146, e18–e43 (2022).

    Article  PubMed  Google Scholar 

  29. Kistler, P. M. et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J. Am. Coll. Cardiol. 44, 109–116 (2004).

    Article  PubMed  Google Scholar 

  30. Roberts, J. D. et al. Epigenetic age and the risk of incident atrial fibrillation. Circulation 144, 1899–1911 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 157, 1515–1526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513–532 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Ward-Caviness, C. K. Accelerated epigenetic aging and incident atrial fibrillation: new outlook on an immutable risk factor? Circulation 144, 1912–1914 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Essien, U. R. et al. Social determinants of atrial fibrillation. Nat. Rev. Cardiol. 18, 763–773 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dewland, T. A., Olgin, J. E., Vittinghoff, E. & Marcus, G. M. Incident atrial fibrillation among Asians, Hispanics, blacks, and whites. Circulation 128, 2470–2477 (2013).

    Article  PubMed  Google Scholar 

  36. Norby, F. L., Benjamin, E. J., Alonso, A. & Chugh, S. S. Racial and ethnic considerations in patients with atrial fibrillation: JACC Focus Seminar 5/9. J. Am. Coll. Cardiol. 78, 2563–2572 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heckbert, S. R. et al. Differences by race/ethnicity in the prevalence of clinically detected and monitor-detected atrial fibrillation: MESA. Circ. Arrhythm. Electrophysiol. 13, e007698 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Loehr, L. R. et al. The prevalence of atrial fibrillation on 48-hour ambulatory electrocardiography in African Americans compared to whites: the Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J. 216, 1–8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ellinor, P. T., Yoerger, D. M., Ruskin, J. N. & MacRae, C. A. Familial aggregation in lone atrial fibrillation. Hum. Genet. 118, 179–184 (2005).

    Article  PubMed  Google Scholar 

  40. Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 50, 1225–1233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet. 50, 1234–1239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khurshid, S. et al. Predictive accuracy of a clinical and genetic risk model for atrial fibrillation. Circ. Genom. Precis. Med. 14, e003355 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J. & Helm, R. H. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ. Res. 120, 1501–1517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kornej, J., Börschel, C. S., Benjamin, E. J. & Schnabel, R. B. Epidemiology of atrial fibrillation in the 21st century. Circ. Res. 127, 4–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lau, D. H., Nattel, S., Kalman, J. M. & Sanders, P. Modifiable risk factors and atrial fibrillation. Circulation 136, 583–596 (2017).

    Article  PubMed  Google Scholar 

  47. Lau, D. H. et al. Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. Eur. Heart J. 37, 1573–1581 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Middeldorp, M. E., Ariyaratnam, J., Lau, D. & Sanders, P. Lifestyle modifications for treatment of atrial fibrillation. Heart 106, 325–332 (2020).

    Article  PubMed  Google Scholar 

  50. Kaneko, H. et al. Association of blood pressure classification using the 2017 American College of Cardiology/American Heart Association blood pressure guideline with risk of heart failure and atrial fibrillation. Circulation 143, 2244–2253 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Benjamin, E. J. et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 271, 840–844 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Conen, D. et al. Influence of systolic and diastolic blood pressure on the risk of incident atrial fibrillation in women. Circulation 119, 2146–2152 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Georgiopoulos, G. et al. The relationship between blood pressure and risk of atrial fibrillation: a Mendelian randomization study. Eur. J. Prev. Cardiol. 29, 1494–1500 (2022).

    Article  Google Scholar 

  54. Hyman, M. C. et al. Genetically predicted blood pressure and risk of atrial fibrillation. Hypertension 77, 376–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Lau, D. H. et al. Short-term hypertension is associated with the development of atrial fibrillation substrate: a study in an ovine hypertensive model. Heart Rhythm 7, 396–404 (2010).

    Article  PubMed  Google Scholar 

  56. Lau, D. H. et al. Hypertension and atrial fibrillation: evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model. Heart Rhythm 7, 1282–1290 (2010).

    Article  PubMed  Google Scholar 

  57. Medi, C. et al. Atrial electrical and structural changes associated with longstanding hypertension in humans: implications for the substrate for atrial fibrillation. J. Cardiovasc. Electrophysiol. 22, 1317–1324 (2011).

    Article  PubMed  Google Scholar 

  58. Lee, S. R. et al. Hypertension burden and the risk of new-onset atrial fibrillation: a nationwide population-based study. Hypertension 77, 919–928 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, S. R. et al. Blood pressure variability and incidence of new-onset atrial fibrillation: a nationwide population-based study. Hypertension 75, 309–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Tikhonoff, V. et al. Ambulatory blood pressure and long-term risk for atrial fibrillation. Heart 104, 1263–1270 (2018).

    Article  PubMed  Google Scholar 

  61. Coccina, F. et al. Ambulatory blood pressure and risk of new-onset atrial fibrillation in treated hypertensive patients. J. Clin. Hypertens. 23, 147–152 (2021).

    Article  Google Scholar 

  62. Matsumoto, K. et al. Office, central and ambulatory blood pressure for predicting incident atrial fibrillation in older adults. J. Hypertens. 39, 46–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, L. Y. et al. Effect of intensive blood pressure lowering on incident atrial fibrillation and p-wave indices in the ACCORD blood pressure trial. Am. J. Hypertens. 29, 1276–1282 (2016).

    Article  PubMed  Google Scholar 

  64. Soliman, E. Z. et al. Effect of intensive blood pressure lowering on the risk of atrial fibrillation. Hypertension 75, 1491–1496 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Okin, P. M. et al. Effect of lower on-treatment systolic blood pressure on the risk of atrial fibrillation in hypertensive patients. Hypertension 66, 368–373 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Verdecchia, P. et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet 374, 525–533 (2009).

    Article  PubMed  Google Scholar 

  67. Wong, C. X. et al. Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation: a meta-analysis of 626,603 individuals in 51 studies. JACC Clin. Electrophysiol. 1, 139–152 (2015).

    Article  PubMed  Google Scholar 

  68. Tedrow, U. B. et al. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J. Am. Coll. Cardiol. 55, 2319–2327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Huxley, R. R. et al. Physical activity, obesity, weight change and risk of atrial fibrillation: the atherosclerosis risk in communities (ARIC) study. Circ. Arrhythm. Electrophysiol. 7, 620–625 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kim, M. S. et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 42, 3388–3403 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Abed, H. S. et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm 10, 90–100 (2013).

    Article  PubMed  Google Scholar 

  72. Mahajan, R. et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J. Am. Coll. Cardiol. 66, 1–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Mahajan, R. et al. Electroanatomical remodeling of the atria in obesity: impact of adjacent epicardial Fat. JACC Clin. Electrophysiol. 4, 1529–1540 (2018).

    Article  PubMed  Google Scholar 

  74. Ernault, A. C., Meijborg, V. M. F. & Coronel, R. Modulation of cardiac arrhythmogenesis by epicardial adipose tissue: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78, 1730–1745 (2021).

    Article  PubMed  Google Scholar 

  75. Shaihov-Teper, O. et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation 143, 2475–2493 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Kang, S. H. et al. Underweight is a risk factor for atrial fibrillation: a nationwide population-based study. Int. J. Cardiol. 215, 449–456 (2016).

    Article  PubMed  Google Scholar 

  77. Lim, Y. M. et al. Body mass index variability and long-term risk of new-onset atrial fibrillation in the general population: a Korean nationwide cohort study. Mayo Clin. Proc. 94, 225–235 (2019).

    Article  PubMed  Google Scholar 

  78. Azarbal, F. et al. Lean body mass and risk of incident atrial fibrillation in post-menopausal women. Eur. Heart J. 37, 1606–1613 (2016).

    Article  PubMed  Google Scholar 

  79. Fenger-Grøn, M., Overvad, K., Tjønneland, A. & Frost, L. Lean body mass is the predominant anthropometric risk factor for atrial fibrillation. J. Am. Coll. Cardiol. 69, 2488–2497 (2017).

    Article  PubMed  Google Scholar 

  80. Tikkanen, E. et al. Body composition and atrial fibrillation: a Mendelian randomization study. Eur. Heart J. 40, 1277–1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jamaly, S. et al. Bariatric surgery and the risk of new-onset atrial fibrillation in Swedish obese subjects. J. Am. Coll. Cardiol. 68, 2497–2504 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Höskuldsdóttir, G. et al. Potential effects of bariatric surgery on the incidence of heart failure and atrial fibrillation in patients with type 2 diabetes mellitus and obesity and on mortality in patients with preexisting heart failure: a nationwide, matched, observational cohort study. J. Am. Heart Assoc. 10, e019323 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Alonso, A. et al. Effect of an intensive lifestyle intervention on atrial fibrillation risk in individuals with type 2 diabetes: the Look AHEAD randomized trial. Am. Heart J. 170, 770–777 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Huxley, R. R. et al. Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: the Atherosclerosis Risk in Communities study. Heart 98, 133–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, A., Green, J. B., Halperin, J. L. & Piccini, J. P. Atrial fibrillation and diabetes mellitus. J. Am. Coll. Cardiol. 74, 1107–1115 (2019).

    Article  PubMed  Google Scholar 

  86. Huxley, R. R., Filion, K. B., Konety, S. & Alonso, A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am. J. Cardiol. 108, 56–62 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Watanabe, M. et al. Conduction and refractory disorders in the diabetic atrium. Am. J. Physiol. Heart Circ. Physiol. 303, H86–H95 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Meng, T. et al. Diabetes mellitus promotes atrial structural remodeling and PARP-1/Ikkα/NF-κB pathway activation in mice. Diabetes Metab. Syndr. Obes. 14, 2189–2199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Saito, S. et al. Glucose fluctuations increase the incidence of atrial fibrillation in diabetic rats. Cardiovasc. Res. 104, 5–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Otake, H., Suzuki, H., Honda, T. & Maruyama, Y. Influences of autonomic nervous system on atrial arrhythmogenic substrates and the incidence of atrial fibrillation in diabetic heart. Int. Heart J. 50, 627–641 (2009).

    Article  PubMed  Google Scholar 

  91. Chao, T. F. et al. Atrial substrate properties and outcome of catheter ablation in patients with paroxysmal atrial fibrillation associated with diabetes mellitus or impaired fasting glucose. Am. J. Cardiol. 106, 1615–1620 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Fatemi, O. et al. Impact of intensive glycemic control on the incidence of atrial fibrillation and associated cardiovascular outcomes in patients with type 2 diabetes mellitus (from the Action to Control Cardiovascular Risk in Diabetes Study). Am. J. Cardiol. 114, 1217–1222 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chang, S. H. et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc. Diabetol. 13, 123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chang, C. Y. et al. Dipeptidyl peptidase-4 inhibitor decreases the risk of atrial fibrillation in patients with type 2 diabetes: a nationwide cohort study in Taiwan. Cardiovasc. Diabetol. 16, 159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Zelniker, T. A. et al. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial. Circulation 141, 1227–1234 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Li, W. et al. Comparison of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide receptor agonists for atrial fibrillation in type 2 diabetes mellitus: systematic review with network meta-analysis of randomized controlled trials. J. Cardiovasc. Pharmacol. 79, 281–288 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Gallagher, C. et al. Alcohol and incident atrial fibrillation — a systematic review and meta-analysis. Int. J. Cardiol. 246, 46–52 (2017).

    Article  PubMed  Google Scholar 

  100. Larsson, S. C., Drca, N. & Wolk, A. Alcohol consumption and risk of atrial fibrillation: a prospective study and dose-response meta-analysis. J. Am. Coll. Cardiol. 64, 281–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Tu, S. J. et al. Risk thresholds for total and beverage-specific alcohol consumption and incident atrial fibrillation. JACC Clin. Electrophysiol. 7, 1561–1569 (2021).

    Article  PubMed  Google Scholar 

  102. Csengeri, D. et al. Alcohol consumption, cardiac biomarkers, and risk of atrial fibrillation and adverse outcomes. Eur. Heart J. 42, 1170–1177 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yang, L., Chen, H., Shu, T., Pan, M. & Huang, W. Risk of incident atrial fibrillation with low-to-moderate alcohol consumption is associated with gender, region, alcohol category: a systematic review and meta-analysis. Europace 24, 729–746 (2022).

    Article  PubMed  Google Scholar 

  104. Marcus, G. M. et al. Individualized studies of triggers of paroxysmal atrial fibrillation: the I-STOP-AFib randomized clinical trial. JAMA Cardiol. 7, 167–174 (2022).

    Article  PubMed  Google Scholar 

  105. Marcus, G. M. et al. Acute consumption of alcohol and discrete atrial fibrillation events. Ann. Intern. Med. 174, 1503–1509 (2021).

    Article  PubMed  Google Scholar 

  106. Voskoboinik, A. et al. Acute electrical, autonomic and structural effects of binge drinking: Insights into the ‘holiday heart syndrome’. Int. J. Cardiol. 331, 100–105 (2021).

    Article  PubMed  Google Scholar 

  107. Marcus, G. M. et al. A randomized, double-blind, placebo-controlled trial of intravenous alcohol to assess changes in atrial electrophysiology. JACC Clin. Electrophysiol. 7, 662–670 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Voskoboinik, A. et al. Moderate alcohol consumption is associated with atrial electrical and structural changes: Insights from high-density left atrial electroanatomic mapping. Heart Rhythm 16, 251–259 (2019).

    Article  PubMed  Google Scholar 

  109. Elliott, A. D., Linz, D., Verdicchio, C. V. & Sanders, P. Exercise and atrial fibrillation: prevention or causation? Heart Lung Circ. 27, 1078–1085 (2018).

    Article  PubMed  Google Scholar 

  110. Mishima, R. S. et al. Self-reported physical activity and atrial fibrillation risk: a systematic review and meta-analysis. Heart Rhythm 18, 520–528 (2021).

    Article  PubMed  Google Scholar 

  111. Elliott, A. D. et al. Association between physical activity and risk of incident arrhythmias in 402 406 individuals: evidence from the UK Biobank cohort. Eur. Heart J. 41, 1479–1486 (2020).

    Article  PubMed  Google Scholar 

  112. Mozaffarian, D., Furberg, C. D., Psaty, B. M. & Siscovick, D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation 118, 800–807 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Azarbal, F. et al. Obesity, physical activity, and their interaction in incident atrial fibrillation in postmenopausal women. J. Am. Heart Assoc. 3, e001127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jin, M.-N. et al. Physical activity and risk of atrial fibrillation: a nationwide cohort study in general population. Sci. Rep. 9, 13270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Khurshid, S. et al. Accelerometer-derived physical activity and risk of atrial fibrillation. Eur. Heart J. 42, 2472–2483 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. O’Neal, W. T. et al. Objectively measured physical activity and the risk of atrial fibrillation (from the REGARDS study). Am. J. Cardiol. 128, 107–112 (2020).

    Article  PubMed  Google Scholar 

  117. Qureshi, W. T. et al. Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford ExercIse Tesing (FIT) Project. Circulation 131, 1827–1834 (2015).

    Article  PubMed  Google Scholar 

  118. Elliott, A. D., Maatman, B., Emery, M. S. & Sanders, P. The role of exercise in atrial fibrillation prevention and promotion: finding optimal ranges for health. Heart Rhythm 14, 1713–1720 (2017).

    Article  PubMed  Google Scholar 

  119. Everett, B. M. et al. Physical activity and the risk of incident atrial fibrillation in women. Circ. Cardiovasc. Qual. Outcomes 4, 321–327 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Drca, N., Wolk, A., Jensen-Urstad, M. & Larsson, S. C. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. Heart 100, 1037–1042 (2014).

    Article  PubMed  Google Scholar 

  121. Aizer, A. et al. Relation of vigorous exercise to risk of atrial fibrillation. Am. J. Cardiol. 103, 1572–1577 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Andersen, K. et al. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur. Heart J. 34, 3624–3631 (2013).

    Article  PubMed  Google Scholar 

  123. Mont, L., Elosua, R. & Brugada, J. Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. Europace 11, 11–17 (2009).

    Article  PubMed  Google Scholar 

  124. Myrstad, M. et al. Increased risk of atrial fibrillation among elderly Norwegian men with a history of long-term endurance sport practice. Scand. J. Med. Sci. Sports 24, e238–e244 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Newman, W. et al. Risk of atrial fibrillation in athletes: a systematic review and meta-analysis. Br. J. Sports Med. 55, 1233–1238 (2021).

    Article  PubMed  Google Scholar 

  126. Guasch, E. et al. Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model. J. Am. Coll. Cardiol. 62, 68–77 (2013).

    Article  PubMed  Google Scholar 

  127. Aschar-Sobbi, R. et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat. Commun. 6, 6018 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Elliott, A. D. et al. Atrial remodeling and ectopic burden in recreational athletes: Implications for risk of atrial fibrillation. Clin. Cardiol. 41, 843–848 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Stein, R., Medeiros, C. M., Rosito, G. A., Zimerman, L. I. & Ribeiro, J. P. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J. Am. Coll. Cardiol. 39, 1033–1038 (2002).

    Article  PubMed  Google Scholar 

  130. Peritz, D. C. et al. High-intensity endurance training is associated with left atrial fibrosis. Am. Heart J. 226, 206–213 (2020).

    Article  PubMed  Google Scholar 

  131. Khan, H., Kunutsor, S. K., Rauramaa, R., Merchant, F. M. & Laukkanen, J. A. Long-term change in cardiorespiratory fitness in relation to atrial fibrillation and heart failure (from the Kuopio Ischemic Heart Disease Risk Factor Study). Am. J. Cardiol. 121, 956–960 (2018).

    Article  PubMed  Google Scholar 

  132. Linz, D. et al. Associations of obstructive sleep apnea with atrial fibrillation and continuous positive airway pressure treatment: a review. JAMA Cardiol. 3, 532–540 (2018).

    Article  PubMed  Google Scholar 

  133. Gami, A. S. et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 110, 364–367 (2004).

    Article  PubMed  Google Scholar 

  134. Gami, A. S. et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J. Am. Coll. Cardiol. 49, 565–571 (2007).

    Article  PubMed  Google Scholar 

  135. Tung, P. et al. Obstructive and central sleep apnea and the risk of incident atrial fibrillation in a community cohort of men and women. J. Am. Heart Assoc. 6, e004500 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Iwasaki, Y. K. et al. Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea. Heart Rhythm 9, 1409–1416 (2012).

    Article  PubMed  Google Scholar 

  137. Linz, D., Schotten, U., Neuberger, H.-R., Böhm, M. & Wirth, K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm 8, 1436–14433 (2011).

    Article  PubMed  Google Scholar 

  138. Iwasaki, Y.-K. et al. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J. Am. Coll. Cardiol. 64, 2013–2023 (2014).

    Article  PubMed  Google Scholar 

  139. Linz, B. et al. Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model. Heart Rhythm 18, 455–464 (2021).

    Article  PubMed  Google Scholar 

  140. Dimitri, H. et al. Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation. Heart Rhythm 9, 321–327 (2012).

    Article  PubMed  Google Scholar 

  141. Nalliah, C. J. et al. Sleep apnoea has a dose-dependent effect on atrial remodelling in paroxysmal but not persistent atrial fibrillation: a high-density mapping study. Europace 23, 691–700 (2021).

    Article  PubMed  Google Scholar 

  142. McEvoy, R. D. et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 375, 919–931 (2016).

    Article  PubMed  Google Scholar 

  143. Li, X. et al. Healthy sleep patterns and risk of incident arrhythmias. J. Am. Coll. Cardiol. 78, 1197–1207 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Alonso, A. et al. Blood lipids and the incidence of atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis and the Framingham Heart Study. J. Am. Heart Assoc. 3, e001211 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Haywood, L. J. et al. Atrial fibrillation at baseline and during follow-up in ALLHAT (antihypertensive and lipid-lowering treatment to prevent heart attack trial). J. Am. Coll. Cardiol. 54, 2023–2031 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Mora, S., Akinkuolie, A. O., Sandhu, R. K., Conen, D. & Albert, C. M. Paradoxical association of lipoprotein measures with incident atrial fibrillation. Circ. Arrhythm. Electrophysiol. 7, 612–619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lopez, F. L. et al. Blood lipid levels, lipid-lowering medications, and the incidence of atrial fibrillation: the atherosclerosis risk in communities study. Circ. Arrhythm. Electrophysiol. 5, 155–162 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mohammadi-Shemirani, P. et al. Elevated lipoprotein(a) and risk of atrial fibrillation: an observational and Mendelian randomization study. J. Am. Coll. Cardiol. 79, 1579–1590 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Davignon, J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 109, III39–III43 (2004).

    Article  PubMed  Google Scholar 

  151. Rahimi, K. et al. Effect of statins on atrial fibrillation: collaborative meta-analysis of published and unpublished evidence from randomised controlled trials. BMJ 342, d1250 (2011).

    Article  PubMed  Google Scholar 

  152. Aune, D., Schlesinger, S., Norat, T. & Riboli, E. Tobacco smoking and the risk of atrial fibrillation: a systematic review and meta-analysis of prospective studies. Eur. J. Prev. Cardiol. 25, 1437–1451 (2018).

    Article  PubMed  Google Scholar 

  153. Shan, H. et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res. 83, 465–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Wang, H. et al. Nicotine is a potent blocker of the cardiac A-type K+ channels. Effects on cloned Kv4.3 channels and native transient outward current. Circulation 102, 1165–1171 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Münzel, T. et al. Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur. Heart J. 41, 4057–4070 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chamberlain, A. M. et al. Smoking and incidence of atrial fibrillation: results from the Atherosclerosis Risk in Communities (ARIC) study. Heart Rhythm 8, 1160–1166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Groh, C. A. et al. Patient-reported triggers of paroxysmal atrial fibrillation. Heart Rhythm 16, 996–1002 (2019).

    Article  PubMed  Google Scholar 

  158. Bodar, V., Chen, J., Gaziano, J. M., Albert, C. & Djoussé, L. Coffee consumption and risk of atrial fibrillation in the physicians’ health study. J. Am. Heart Assoc. 8, e011346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Casiglia, E. et al. Caffeine intake reduces incident atrial fibrillation at a population level. Eur. J. Prev. Cardiol. 25, 1055–1062 (2018).

    Article  PubMed  Google Scholar 

  160. Kim, E. J. et al. Coffee consumption and incident tachyarrhythmias: reported behavior, mendelian randomization, and their interactions. JAMA Intern. Med. 181, 1185–1193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu, J. et al. Intermittent nonhabitual coffee consumption and risk of atrial fibrillation: the multi-ethnic study of atherosclerosis. J. Atr. Fibrillation 12, 2205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mozaffarian, D. et al. Fish intake and risk of incident atrial fibrillation. Circulation 110, 368–373 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wu, J. H. et al. Association of plasma phospholipid long-chain ω-3 fatty acids with incident atrial fibrillation in older adults: the cardiovascular health study. Circulation 125, 1084–1093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Garg, P. K. et al. Plasma ω-3 and ω-6 PUFA concentrations and risk of atrial fibrillation: the multi-ethnic study of atherosclerosis. J. Nutr. 151, 1479–1486 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Rix, T. A. et al. A U-shaped association between consumption of marine n-3 fatty acids and development of atrial fibrillation/atrial flutter-a Danish cohort study. Europace 16, 1554–1561 (2014).

    Article  PubMed  Google Scholar 

  166. Gronroos, N. N. et al. Fish, fish-derived n-3 fatty acids, and risk of incident atrial fibrillation in the Atherosclerosis Risk in Communities (ARIC) study. PLoS One 7, e36686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Brouwer, I. A., Heeringa, J., Geleijnse, J. M., Zock, P. L. & Witteman, J. C. Intake of very long-chain n-3 fatty acids from fish and incidence of atrial fibrillation. The Rotterdam Study. Am. Heart J. 151, 857–862 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Shen, J. et al. Dietary factors and incident atrial fibrillation: the Framingham Heart Study. Am. J. Clin. Nutr. 93, 261–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Albert, C. M. et al. Effect of marine omega-3 fatty acid and vitamin D supplementation on incident atrial fibrillation: a randomized clinical trial. JAMA 325, 1061–1073 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2018).

    Article  PubMed  Google Scholar 

  171. Nicholls, S. J. et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA 324, 2268–2280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gencer, B. et al. Effect of long-term marine ɷ-3 fatty acids supplementation on the risk of atrial fibrillation in randomized controlled trials of cardiovascular outcomes: a systematic review and meta-analysis. Circulation 144, 1981–1990 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Den Ruijter, H. M. et al. Pro- and antiarrhythmic properties of a diet rich in fish oil. Cardiovasc. Res. 73, 316–325 (2007).

    Article  Google Scholar 

  174. Khawaja, O., Gaziano, J. M. & Djousse, L. Nut consumption and risk of atrial fibrillation in the Physicians’ Health study. Nutr. J. 11, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang, S. et al. Low-carbohydrate diets and risk of incident atrial fibrillation: a prospective cohort study. J. Am. Heart Assoc. 8, e011955 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Martínez-González, M. et al. Extravirgin olive oil consumption reduces risk of atrial fibrillation: the PREDIMED (Prevención con Dieta Mediterránea) trial. Circulation 130, 18–26 (2014).

    Article  PubMed  Google Scholar 

  177. Svingen, G. F. T. et al. Increased plasma trimethylamine-N-oxide is associated with incident atrial fibrillation. Int. J. Cardiol. 267, 100–106 (2018).

    Article  PubMed  Google Scholar 

  178. Papandreou, C. et al. Choline metabolism and risk of atrial fibrillation and heart failure in the PREDIMED study. Clin. Chem. 67, 288–297 (2021).

    Article  PubMed  Google Scholar 

  179. Zhang, Y. et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc. Res. 118, 785–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. Gawałko, M. et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc. Res. 118, 2415–2427 (2021).

    Article  PubMed Central  Google Scholar 

  181. Chung, M. K. et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation 141, e750–e772 (2020).

    Article  PubMed  Google Scholar 

  182. Disertori, M. et al. Valsartan for prevention of recurrent atrial fibrillation. N. Engl. J. Med. 360, 1606–1617 (2009).

    Article  PubMed  Google Scholar 

  183. Goette, A. et al. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. Circ. Arrhythm. Electrophysiol. 5, 43–51 (2012).

    Article  PubMed  Google Scholar 

  184. Rivard, L. et al. Effect of perindopril on atrial fibrillation recurrence and burden: results of the Canadian Trial of Atrial Fibrillation (CTAF)-2. CJC Open 3, 1100–1107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Wang, Q. et al. Perindopril for the prevention of atrial fibrillation recurrence after radiofrequency catheter ablation: one-year experience. Heart Rhythm 13, 2040–2047 (2016).

    Article  PubMed  Google Scholar 

  186. Parkash, R. et al. Effect of aggressive blood pressure control on the recurrence of atrial fibrillation after catheter ablation: a randomized, open label, clinical trial (substrate modification with aggressive blood pressure control: SMAC-AF). Circulation 135, 1788–1798 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Steinberg, J. S. et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA 323, 248–255 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Abed, H. S. et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA 310, 2050–2060 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Pathak, R. K. et al. Long-term effect of goal directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY study). J. Am. Coll. Cardiol. 65, 2159–2169 (2015).

    Article  PubMed  Google Scholar 

  190. Middeldorp, M. E. et al. Prevention and regressive effect of weight-loss and risk factor modification on atrial fibrillation: the REVERSE-AF study. Europace 20, 1929–1935 (2018).

    Article  PubMed  Google Scholar 

  191. Yaeger, A. et al. A nurse-led limited risk factor modification program to address obesity and obstructive sleep apnea in atrial fibrillation patients. J. Am. Heart Assoc. 7, e010414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Gessler, N. et al. Supervised obesity reduction trial for AF ablation patients: results from the SORT-AF trial. Europace 23, 1548–1558 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Mohanty, S. et al. Impact of weight loss on ablation outcome in obese patients with longstanding persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 29, 246–253 (2018).

    Article  PubMed  Google Scholar 

  194. Donnellan, E. et al. Association between pre-ablation glycemic control and outcomes among patients with diabetes undergoing atrial fibrillation ablation. JACC Clin. Electrophysiol. 5, 897–903 (2019).

    Article  PubMed  Google Scholar 

  195. Voskoboinik, A. et al. Alcohol abstinence in drinkers with atrial fibrillation. N. Engl. J. Med. 382, 20–28 (2020).

    Article  PubMed  Google Scholar 

  196. Osbak, P. S. et al. A randomized study of the effects of exercise training on patients with atrial fibrillation. Am. Heart J. 162, 1080–1087 (2011).

    Article  PubMed  Google Scholar 

  197. Malmo, V. et al. Aerobic interval training reduces the burden of atrial fibrillation in the short term: a randomized trial. Circulation 133, 466–473 (2016).

    Article  PubMed  Google Scholar 

  198. Skielboe, A. K. et al. Cardiovascular exercise and burden of arrhythmia in patients with atrial fibrillation - A randomized controlled trial. PLoS One 12, e0170060 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Pathak, R. K. et al. Impact of cardiorespiratory fitness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J. Am. Coll. Cardiol. 66, 985–996 (2015).

    Article  PubMed  Google Scholar 

  200. Garnvik, L. E. et al. Physical activity, cardiorespiratory fitness, and cardiovascular outcomes in individuals with atrial fibrillation: the HUNT study. Eur. Heart J. 41, 1467–1475 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Buckley, B. J. R. et al. Exercise-based cardiac rehabilitation and all-cause mortality among patients with atrial fibrillation. J. Am. Heart Assoc. 10, e020804 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Risom, S. S. et al. Cardiac rehabilitation versus usual care for patients treated with catheter ablation for atrial fibrillation: results of the randomized CopenHeartRFA trial. Am. Heart J. 181, 120–129 (2016).

    Article  PubMed  Google Scholar 

  203. Li, L. et al. Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a meta-analysis of observational studies. Europace 16, 1309–1314 (2014).

    Article  PubMed  Google Scholar 

  204. Naruse, Y. et al. Concomitant obstructive sleep apnea increases the recurrence of atrial fibrillation following radiofrequency catheter ablation of atrial fibrillation: clinical impact of continuous positive airway pressure therapy. Heart Rhythm 10, 331–337 (2013).

    Article  PubMed  Google Scholar 

  205. Fein, A. S. et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol. 62, 300–305 (2013).

    Article  PubMed  Google Scholar 

  206. Caples, S. M., Mansukhani, M. P., Friedman, P. A. & Somers, V. K. The impact of continuous positive airway pressure treatment on the recurrence of atrial fibrillation post cardioversion: a randomized controlled trial. Int. J. Cardiol. 278, 133–136 (2019).

    Article  PubMed  Google Scholar 

  207. Traaen, G. M. et al. Effect of continuous positive airway pressure on arrhythmia in atrial fibrillation and sleep apnea: a randomized controlled trial. Am. J. Resp. Crit. Care Med. 204, 573–582 (2021).

    Article  PubMed  Google Scholar 

  208. Hunt, T. E. et al. Effect of continuous positive airway pressure therapy on recurrence of atrial fibrillation after pulmonary vein isolation in patients with obstructive sleep apnea: a randomized controlled trial. Heart Rhythm 19, 1433–1441 (2022).

    Article  PubMed  Google Scholar 

  209. Dernellis, J. & Panaretou, M. Effect of C-reactive protein reduction on paroxysmal atrial fibrillation. Am. Heart J. 150, 1064 (2005).

    Article  PubMed  Google Scholar 

  210. Ozaydin, M. et al. Effect of atorvastatin on the recurrence rates of atrial fibrillation after electrical cardioversion. Am. J. Cardiol. 97, 1490–1493 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Patel, D. et al. The impact of statins and renin-angiotensin-aldosterone system blockers on pulmonary vein antrum isolation outcomes in post-menopausal females. Europace 12, 322–330 (2010).

    Article  PubMed  Google Scholar 

  212. Suleiman, M. et al. Atorvastatin for prevention of atrial fibrillation recurrence following pulmonary vein isolation: a double-blind, placebo-controlled, randomized trial. Heart Rhythm 9, 172–178 (2012).

    Article  PubMed  Google Scholar 

  213. Nigam, A. et al. Fish oil for the reduction of atrial fibrillation recurrence, inflammation, and oxidative stress. J. Am. Coll. Cardiol. 64, 1441–1448 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Kowey, P. R., Reiffel, J. A., Ellenbogen, K. A., Naccarelli, G. V. & Pratt, C. M. Efficacy and safety of prescription omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: a randomized controlled trial. JAMA 304, 2363–2372 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Pathak, R. K. et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the arrest-AF cohort study. J. Am. Coll. Cardiol. 64, 2222–2231 (2014).

    Article  PubMed  Google Scholar 

  216. Kontis, V. et al. Contribution of six risk factors to achieving the 25×25 non-communicable disease mortality reduction target: a modelling study. Lancet 384, 427–437 (2014).

    Article  PubMed  Google Scholar 

  217. Rienstra, M. et al. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: results of the RACE 3 trial. Eur. Heart J. 39, 2987–2996 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.D.E. is supported by a Future Leader Fellowship from the National Heart Foundation of Australia. M.E.M. is supported by a postdoctoral fellowship from the University of Adelaide. P.S. is supported by a Practitioner Fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Contributions

A.D.E., M.E.M. and P.S. researched data for the article, and all the authors discussed its content. A.D.E., M.E.M. and P.S. wrote the manuscript, and I.C.V.G. and C.M.A. reviewed and/or edited it before submission.

Corresponding author

Correspondence to Prashanthan Sanders.

Ethics declarations

Competing interests

P.S. reports having served on the advisory board of Abbott Medical, Boston Scientific, CathRx, Medtronic and Pacemate. P.S. reports that the University of Adelaide has received, on his behalf, lecture and/or consulting fees from Abbott Medical, Boston Scientific, CathRx, Medtronic and Pacemate. P.S. reports that the University of Adelaide has received, on his behalf, research funding from Abbott Medical, Boston Scientific, Medtronic, Microport and Pacemate. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Eue-Keun Choi, Pamela Lutsey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, A.D., Middeldorp, M.E., Van Gelder, I.C. et al. Epidemiology and modifiable risk factors for atrial fibrillation. Nat Rev Cardiol 20, 404–417 (2023). https://doi.org/10.1038/s41569-022-00820-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00820-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing