Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The bidirectional association between atrial fibrillation and myocardial infarction

Abstract

Atrial fibrillation (AF) is associated with an increased risk of myocardial infarction (MI) and vice versa. This bidirectional association relies on shared risk factors as well as on several direct and indirect mechanisms, including inflammation, atrial ischaemia, left ventricular remodelling, myocardial oxygen supply–demand mismatch and coronary artery embolism, through which one condition can predispose to the other. Patients with both AF and MI are at greater risk of stroke, heart failure and death than patients with only one of the conditions. In this Review, we describe the bidirectional association between AF and MI. We discuss the pathogenic basis of this bidirectional relationship, describe the risk of adverse outcomes when the two conditions coexist, and review current data and guidelines on the prevention and management of both conditions. We also identify important gaps in the literature and propose directions for future research on the bidirectional association between AF and MI. The Review also features a summary of methodological approaches for the study of bidirectional associations in population-based studies.

Key points

  • Atrial fibrillation (AF) is a risk factor for myocardial infarction (MI); the rate of MI is approximately 50% higher in patients with AF than in those without AF.

  • MI is associated with subsequent AF, and the rate of AF is particularly high in the first days after MI.

  • The bidirectional association between AF and MI might be partly explained by indirect mechanisms related to shared risk factors such as age, sex, modifiable risk factors, comorbidities and social determinants of health.

  • There are several mechanisms through which one condition can lead directly to the other, including coronary embolism, oxygen supply–demand mismatch, atrial ischaemia, cardiac remodelling and inflammation.

  • Patients with coexisting AF and MI have an increased risk of stroke, heart failure and death compared with those with either condition alone, emphasizing the importance of prevention and management.

  • Medical treatment in patients with both AF and MI is challenging owing to the need to balance the risks of thromboembolic complications, bleeding and stent thrombosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of selected literature on the bidirectional relationship between AF and MI.
Fig. 2: Inflammatory cells and mediators of inflammation modulate cardiac electrophysiology and structural properties leading to atrial fibrillation.
Fig. 3: Pathophysiology of MI leading to AF and AF leading to MI.

Similar content being viewed by others

References

  1. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lind, L. et al. Life-time covariation of major cardiovascular diseases. Circ. Genom. Precis. Med. 14, e002963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sundbøll, J. et al. Risk of arterial and venous thromboembolism in patients with atrial fibrillation or flutter: a nationwide population-based cohort study. Int. J. Cardiol. 241, 182–187 (2017).

    Article  PubMed  Google Scholar 

  4. Lopes, R. D. et al. Antithrombotic therapy and outcomes of patients with atrial fibrillation following primary percutaneous coronary intervention: results from the APEX-AMI trial. Eur. Heart J. 30, 2019–2028 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo, J. et al. Long-term impact of new-onset atrial fibrillation complicating acute myocardial infarction on heart failure. ESC Heart Fail. 7, 2762–2772 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee, J. H. et al. New-onset paroxysmal atrial fibrillation in acute myocardial infarction: increased risk of stroke. BMJ Open 10, e039600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rathore, S. S. et al. Acute myocardial infarction complicated by atrial fibrillation in the elderly: prevalence and outcomes. Circulation 101, 969–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Fauchier, L. et al. Outcomes in patients with acute myocardial infarction and new atrial fibrillation: a nationwide analysis. Clin. Res. Cardiol. 110, 1431–1438 (2021).

    Article  PubMed  Google Scholar 

  9. Obayashi, Y. et al. Newly diagnosed atrial fibrillation in acute myocardial infarction. J. Am. Heart Assoc. 10, e021417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harrington, A. W. & Wright, J. H. Cardiac infarction: a study of 148 cases. Glasg. Med. J. 119, 1–12 (1933).

    CAS  Google Scholar 

  11. Master, A. M., Dack, S. & Jaffe, H. L. Disturbances of rate and rhythm in acute coronary artery thrombosis. Ann. Intern. Med. 11, 735 (1937).

    Article  Google Scholar 

  12. Simoons, M. L. et al. Improved survival after early thrombolysis in acute myocardial infarction: a randomised trial by the Interuniversity Cardiology Institute in the Netherlands. Lancet 326, 578–581 (1985).

    Article  Google Scholar 

  13. Mintz, S. S. & Katz, L. N. Recent myocardial infarction: an analysis of five hundred and seventy-two cases. Arch. Intern. Med. 80, 205–236 (1947).

    Article  CAS  Google Scholar 

  14. Rosenbaum, F. F. & Levine, S. A. Prognostic value of various clinical and electrocardiographic features of acute myocardial infarction: I. Immediate prognosis. Arch. Intern. Med. 68, 913–944 (1941).

    Article  Google Scholar 

  15. Hurwitz, M. & Eliot, R. S. Arrhythmias in acute myocardial infarction. Dis. Chest 45, 616–626 (1964).

    Article  CAS  PubMed  Google Scholar 

  16. Eldar, M. et al. Significance of paroxysmal atrial fibrillation complicating acute myocardial infarction in the thrombolytic era. SPRINT and Thrombolytic Survey Groups. Circulation 97, 965–970 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Bengtson, L. G. et al. Temporal trends in the occurrence and outcomes of atrial fibrillation in patients with acute myocardial infarction (from the Atherosclerosis Risk in Communities Surveillance Study). Am. J. Cardiol. 114, 692–697 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grines, C. L. et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. N. Engl. J. Med. 328, 673–679 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Schömig, A. et al. Coronary stenting plus platelet glycoprotein IIb/IIIa blockade compared with tissue plasminogen activator in acute myocardial infarction. N. Engl. J. Med. 343, 385–391 (2000).

    Article  PubMed  Google Scholar 

  20. Soliman, E. Z. et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern. Med. 174, 107–114 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Neal, W. T., Sangal, K., Zhang, Z. M. & Soliman, E. Z. Atrial fibrillation and incident myocardial infarction in the elderly. Clin. Cardiol. 37, 750–755 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chao, T. F. et al. Acute myocardial infarction in patients with atrial fibrillation with a CHA2DS2-VASc score of 0 or 1: a nationwide cohort study. Heart Rhythm 11, 1941–1947 (2014).

    Article  PubMed  Google Scholar 

  23. Soliman, E. Z. et al. Atrial fibrillation and risk of ST-segment-elevation versus non-ST-segment-elevation myocardial infarction: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 131, 1843–1850 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ruddox, V. et al. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 24, 1555–1566 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo, X. Y. et al. Atrial fibrillation is associated with an increased risk of myocardial infarction: insights from a meta-analysis. Atherosclerosis 254, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Piccini, J. P. et al. Clinical course of atrial fibrillation in older adults: the importance of cardiovascular events beyond stroke. Eur. Heart J. 35, 250–256 (2014).

    Article  PubMed  Google Scholar 

  27. Yahagi, K., Davis, H. R., Arbustini, E. & Virmani, R. Sex differences in coronary artery disease: pathological observations. Atherosclerosis 239, 260–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Magnani, J. W. et al. Racial differences in atrial fibrillation-related cardiovascular disease and mortality: the Atherosclerosis Risk in Communities (ARIC) Study. JAMA Cardiol. 1, 433–441 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Neal, W. T. et al. Sex and racial differences in cardiovascular disease risk in patients with atrial fibrillation. PLoS ONE 14, e0222147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lett, E., Asabor, E., Beltrán, S., Cannon, A. M. & Arah, O. A. Conceptualizing, contextualizing, and operationalizing race in quantitative health sciences research. Ann. Fam. Med. 20, 157–163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Luo, J. et al. Long-term impact of the burden of new-onset atrial fibrillation in patients with acute myocardial infarction: results from the NOAFCAMI-SH registry. Europace 23, 196–204 (2021).

    Article  PubMed  Google Scholar 

  32. Romanov, A. et al. Incidence of atrial fibrillation detected by continuous rhythm monitoring after acute myocardial infarction in patients with preserved left ventricular ejection fraction: results of the ARREST study. Europace 20, 263–270 (2018).

    Article  PubMed  Google Scholar 

  33. Bloch Thomsen, P. E. et al. Long-term recording of cardiac arrhythmias with an implantable cardiac monitor in patients with reduced ejection fraction after acute myocardial infarction: the Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) study. Circulation 122, 1258–1264 (2010).

    Article  PubMed  Google Scholar 

  34. Krijthe, B. P. et al. Unrecognized myocardial infarction and risk of atrial fibrillation: the Rotterdam Study. Int. J. Cardiol. 168, 1453–1457 (2013).

    Article  PubMed  Google Scholar 

  35. Jabre, P. et al. Atrial fibrillation and death after myocardial infarction: a community study. Circulation 123, 2094–2100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Massicotte-Azarniouch, D. et al. Incident atrial fibrillation and the risk of congestive heart failure, myocardial infarction, end-stage kidney disease, and mortality among patients with a decreased estimated GFR. Am. J. Kidney Dis. 71, 191–199 (2018).

    Article  PubMed  Google Scholar 

  37. Schnabel, R. B. D. et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386, 154–162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fang, J., Alderman, M. H., Keenan, N. L. & Ayala, C. Acute myocardial infarction hospitalization in the United States, 1979 to 2005. Am. J. Med. 123, 259–266 (2010).

    Article  PubMed  Google Scholar 

  39. Staerk, L. et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: cohort study based on longitudinal data from the Framingham Heart Study. BMJ 361, k1453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dai, H. et al. Global, regional, and national prevalence, incidence, mortality, and risk factors for atrial fibrillation, 1990–2017: results from the Global Burden of Disease Study 2017. Eur. Heart J. Qual. Care Clin. Outcomes 7, 574–582 (2020).

    Article  PubMed Central  Google Scholar 

  41. Alonso, A. et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J. Am. Heart Assoc. 2, e000102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mou, L. et al. Lifetime risk of atrial fibrillation by race and socioeconomic status: ARIC Study (Atherosclerosis Risk in Communities). Circ. Arrhythm. Electrophysiol. 11, e006350 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kytö, V., Sipilä, J. & Rautava, P. Association of age and gender with risk for non-ST-elevation myocardial infarction. Eur. J. Prev. Cardiol. 22, 1003–1008 (2020).

    Article  Google Scholar 

  44. Kytö, V., Sipilä, J. & Rautava, P. Gender, age and risk of ST segment elevation myocardial infarction. Eur. J. Clin. Invest. 44, 902–909 (2014).

    Article  PubMed  Google Scholar 

  45. Virani, S. S. et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).

    Article  PubMed  Google Scholar 

  46. Heckbert, S. R. et al. Differences by race/ethnicity in the prevalence of clinically detected and monitor-detected atrial fibrillation: MESA. Circ. Arrhythm. Electrophysiol. 13, e007698 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Z. M. et al. Race and sex differences in the incidence and prognostic significance of silent myocardial infarction in the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 133, 2141–2148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Essien, U. R. et al. Social determinants of atrial fibrillation. Nat. Rev. Cardiol. 18, 763–773 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Norby, F. L. et al. Trajectories of cardiovascular risk factors and incidence of atrial fibrillation over a 25-year follow-up: the ARIC Study (Atherosclerosis Risk in Communities). Circulation 134, 599–610 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lind, L., Ingelsson, M., Sundstrom, J. & Ärnlöv, J. Impact of risk factors for major cardiovascular diseases: a comparison of life-time observational and Mendelian randomisation findings. Open Heart 8, e001735 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Banks, E. et al. Tobacco smoking and risk of 36 cardiovascular disease subtypes: fatal and non-fatal outcomes in a large prospective Australian study. BMC Med. 17, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chow, C. K. et al. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation 121, 750–758 (2010).

    Article  PubMed  Google Scholar 

  53. Aune, D., Schlesinger, S., Norat, T. & Riboli, E. Tobacco smoking and the risk of atrial fibrillation: a systematic review and meta-analysis of prospective studies. Eur. J. Prev. Cardiol. 25, 1437–1451 (2020).

    Article  Google Scholar 

  54. Gémes, K. et al. Alcohol consumption is associated with a lower incidence of acute myocardial infarction: results from a large prospective population-based study in Norway. J. Intern. Med. 279, 365–375 (2016).

    Article  PubMed  Google Scholar 

  55. Leong, D. P. et al. Patterns of alcohol consumption and myocardial infarction risk. Circulation 130, 390–398 (2014).

    Article  PubMed  Google Scholar 

  56. Biddinger, K. J. et al. Association of habitual alcohol intake with risk of cardiovascular disease. JAMA Netw. Open 5, e223849 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Larsson, S. C., Drca, N. & Wolk, A. Alcohol consumption and risk of atrial fibrillation: a prospective study and dose-response meta-analysis. J. Am. Coll. Cardiol. 64, 281–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Lankester, J., Zanetti, D., Ingelsson, E. & Assimes, T. L. Alcohol use and cardiometabolic risk in the UK Biobank: a Mendelian randomization study. PLoS ONE 16, e0255801 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Voskoboinik, A. et al. Alcohol abstinence in drinkers with atrial fibrillation. N. Engl. J. Med. 382, 20–28 (2020).

    Article  PubMed  Google Scholar 

  60. Jones, N. R., Taylor, K. S., Taylor, C. J. & Aveyard, P. Weight change and the risk of incident atrial fibrillation: a systematic review and meta-analysis. Heart 105, 1799–1805 (2019).

    Article  PubMed  Google Scholar 

  61. Huxley, R. R. et al. Physical activity, obesity, weight change, and risk of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 7, 620–625 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Abed, H. S. et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA 310, 2050–2060 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Janszky, I. et al. Weight and weight change and risk of acute myocardial infarction and heart failure — the HUNT Study. J. Intern. Med. 280, 312–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Mishima, R. S. et al. Self-reported physical activity and atrial fibrillation risk: a systematic review and meta-analysis. Heart Rhythm 18, 520–528 (2021).

    Article  PubMed  Google Scholar 

  65. Hansen, K. W. et al. Association of fatal myocardial infarction with past level of physical activity: a pooled analysis of cohort studies. Eur. J. Prev. Cardiol. 28, 1590–1598 (2021).

    Article  PubMed  Google Scholar 

  66. Wang, Q. et al. A phenome-wide bidirectional Mendelian randomization analysis of atrial fibrillation. Int. J. Epidemiol. 51, 1153–1166 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Soliman, E. Z. et al. Effect of intensive blood pressure lowering on the risk of atrial fibrillation. Hypertension 75, 1491–1496 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Wright, J. T. et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Xie, X. M. D. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 387, 435–443 (2016).

    Article  PubMed  Google Scholar 

  70. Fang, H.-J. et al. Effects of intensive glucose lowering in treatment of type 2 diabetes mellitus on cardiovascular outcomes: a meta-analysis of data from 58,160 patients in 13 randomized controlled trials. Int. J. Cardiol. 218, 50–58 (2016).

    Article  PubMed  Google Scholar 

  71. Harati, H. et al. No evidence of a causal association of type 2 diabetes and glucose metabolism with atrial fibrillation. Diabetologia 62, 800–804 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dublin, S. et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J. Gen. Intern. Med. 25, 853–858 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kilpi, F., Silventoinen, K., Konttinen, H. & Martikainen, P. Disentangling the relative importance of different socioeconomic resources for myocardial infarction incidence and survival: a longitudinal study of over 300 000 Finnish adults. Eur. J. Public Health 26, 260–266 (2015).

    Article  PubMed  Google Scholar 

  74. Soliman, E. Z., Zhang, Z. M., Judd, S., Howard, V. J. & Howard, G. Comparison of risk of atrial fibrillation among employed versus unemployed (from the REasons for Geographic and Racial Differences in Stroke Study). Am. J. Cardiol. 120, 1298–1301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Salomaa, V. et al. Relation of socioeconomic position to the case fatality, prognosis and treatment of myocardial infarction events; the FINMONICA MI Register Study. J. Epidemiol. Community Health 55, 475–482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hillerson, D. et al. Characteristics, process metrics, and outcomes among patients with ST-elevation myocardial infarction in rural vs urban areas in the US: a report from the US National Cardiovascular Data Registry. JAMA Cardiol. 7, 1016–1024 (2022).

    Article  PubMed  Google Scholar 

  77. Chen, M., Zhao, J., Zhuo, C. & Zheng, L. The association between ambient air pollution and atrial fibrillation — a systematic review and meta-analysis. Int. Heart J. 62, 290–297 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Dahlquist, M. et al. Short-term associations between ambient air pollution and acute atrial fibrillation episodes. Env. Int. 141, 105765 (2020).

    Article  CAS  Google Scholar 

  79. Biondi-Zoccai, G. et al. Impact of environmental pollution and weather changes on the incidence of ST-elevation myocardial infarction. Eur. J. Prev. Cardiol. 28, 1501–1507 (2021).

    Article  PubMed  Google Scholar 

  80. Khosravipour, M., Safari-Faramani, R., Rajati, F. & Omidi, F. The long-term effect of exposure to respirable particulate matter on the incidence of myocardial infarction: a systematic review and meta-analysis study. Env. Sci. Pollut. Res. Int. 29, 42347–42371 (2022).

    Article  CAS  Google Scholar 

  81. Schnabel, R. B. et al. Large-scale candidate gene analysis in whites and African Americans identifies IL6R polymorphism in relation to atrial fibrillation. Circ. Cardiovasc. Genet. 4, 557–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Alasady, M. et al. Coronary artery disease affecting the atrial branches is an independent determinant of atrial fibrillation after myocardial infarction. Heart Rhythm 8, 955–960 (2011).

    Article  PubMed  Google Scholar 

  85. Nishida, K. et al. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model. Circulation 123, 137–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Alasady, M. et al. Myocardial infarction and atrial fibrillation: importance of atrial ischemia. Circ. Arrhythm. Electrophysiol. 6, 738–745 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Popovic, B. et al. Coronary embolism among ST-segment-elevation myocardial infarction patients: mechanisms and management. Circ. Cardiovasc. Interv. 11, e005587 (2018).

    Article  PubMed  Google Scholar 

  88. Range, F. T. et al. Impaired myocardial perfusion and perfusion reserve associated with increased coronary resistance in persistent idiopathic atrial fibrillation. Eur. Heart J. 28, 2223–2230 (2007).

    Article  PubMed  Google Scholar 

  89. Hansson, G. K. Mechanisms of disease: inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Hu, Y. F., Chen, Y. J., Lin, Y. J. & Chen, S. A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 12, 230–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Yuan, S., Lin, A., He, Q. Q., Burgess, S. & Larsson, S. C. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: a two-sample Mendelian randomization study. Int. J. Cardiol. 313, 99–104 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aulin, J. et al. Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation. Am. Heart J. 170, 1151–1160 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Ferro, D. et al. Soluble CD40 ligand predicts ischemic stroke and myocardial infarction in patients with nonvalvular atrial fibrillation. Arterioscler. Thromb. Vasc. Biol. 27, 2763–2768 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Bas, H. A. et al. The association of plasma oxidative status and inflammation with the development of atrial fibrillation in patients presenting with ST elevation myocardial infarction. Scand. J. Clin. Lab. Invest. 77, 77–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Aronson, D. et al. Relation of C-reactive protein and new-onset atrial fibrillation in patients with acute myocardial infarction. Am. J. Cardiol. 100, 753–757 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Varghese, B. et al. Inflammation, atrial fibrillation, and the potential role for colchicine therapy. Heart Rhythm 2, 298–303 (2021).

    Article  Google Scholar 

  98. Nattel, S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin. Electrophysiol. 3, 425–435 (2017).

    Article  PubMed  Google Scholar 

  99. Miyauchi, Y. et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation 108, 360–366 (2003).

    Article  PubMed  Google Scholar 

  100. Sciagrà, R. et al. Detection of infarct size safety threshold for left ventricular ejection fraction impairment in acute myocardial infarction successfully treated with primary percutaneous coronary intervention. Eur. J. Nucl. Med. Mol. Imaging 40, 542–547 (2013).

    Article  PubMed  Google Scholar 

  101. Stone, G. W. et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J. Am. Coll. Cardiol. 67, 1674–1683 (2016).

    Article  PubMed  Google Scholar 

  102. Cha, Y.-M., Redfield, M. M., Shen, W.-K. & Gersh, B. J. Atrial fibrillation and ventricular dysfunction. Circulation 109, 2839–2843 (2004).

    Article  PubMed  Google Scholar 

  103. Reinstadler, S. J. et al. Impact of atrial fibrillation during ST-segment–elevation myocardial infarction on infarct characteristics and prognosis. Circ. Cardiovasc. Imaging 11, e006955 (2018).

    Article  PubMed  Google Scholar 

  104. Sandoval, Y. & Jaffe, A. S. Type 2 myocardial infarction: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 1846–1860 (2019).

    Article  PubMed  Google Scholar 

  105. Luo, C. et al. Documentation of impaired coronary blood flow by TIMI frame count method in patients with atrial fibrillation. Int. J. Cardiol. 167, 1176–1180 (2013).

    Article  PubMed  Google Scholar 

  106. Raphael, C. E. et al. Coronary embolus: an underappreciated cause of acute coronary syndromes. JACC Cardiovasc. Interv. 11, 172–180 (2018).

    Article  PubMed  Google Scholar 

  107. Jabre, P. et al. Mortality associated with atrial fibrillation in patients with myocardial infarction: a systematic review and meta-analysis. Circulation 123, 1587–1593 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Petersen, J. K. et al. Incidence of ischaemic stroke and mortality in patients with acute coronary syndrome and first-time detected atrial fibrillation: a nationwide study. Eur. Heart J. 42, 4553–4561 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, C. L., Chen, P. C., Juang, H. T. & Chang, C. J. Adverse outcomes associated with pre-existing and new-onset atrial fibrillation in patients with acute coronary syndrome: a retrospective cohort study. Cardiol. Ther. 8, 117–127 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gourronc, Y. et al. De novo atrial fibrillation as an independent prognostic marker after ST-segment elevation myocardial infarction: results from the RIMA registry. J. Cardiol. 74, 123–129 (2019).

    Article  PubMed  Google Scholar 

  111. Almendro-Delia, M. et al. Prognostic impact of atrial fibrillation in acute coronary syndromes: results from the ARIAM registry. Eur. Heart J. Acute Cardiovasc. Care 3, 141–148 (2014).

    Article  PubMed  Google Scholar 

  112. Hindricks, G. et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42, 373–498 (2021).

    Article  PubMed  Google Scholar 

  113. January, C. T. et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation 140, e125–e151 (2019).

    Article  PubMed  Google Scholar 

  114. Hess, P. L. et al. Use of evidence-based cardiac prevention therapy among outpatients with atrial fibrillation. Am. J. Med. 126, 625–632.e1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lee, C. J. et al. Antithrombotic therapy and first myocardial infarction in patients with atrial fibrillation. J. Am. Coll. Cardiol. 69, 2901–2909 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981–992 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Lee, C. J. et al. Risk of myocardial infarction in anticoagulated patients with atrial fibrillation. J. Am. Coll. Cardiol. 72, 17–26 (2018).

    Article  PubMed  Google Scholar 

  120. Vemulapalli, S. et al. Blood pressure control and cardiovascular outcomes in patients with atrial fibrillation (from the ORBIT-AF Registry). Am. J. Cardiol. 123, 1628–1636 (2019).

    Article  PubMed  Google Scholar 

  121. Choi, S. et al. Association of smoking cessation after atrial fibrillation diagnosis on the risk of cardiovascular disease: a cohort study of South Korean men. BMC Public Health 20, 168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hanif, K., Bid, H. K. & Konwar, R. Reinventing the ACE inhibitors: some old and new implications of ACE inhibition. Hypertens. Res. 33, 11–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Pedersen, O. D., Bagger, H., Kober, L. & Torp-Pedersen, C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 100, 376–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Batra, G. et al. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are associated with improvedoutcome but do not prevent new-onset atrial fibrillation after acute myocardial infarction.J. Am. Heart Assoc. 6, e005165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Singh, J. P. et al. Renin-angiotensin-system modulators and the incidence of atrial fibrillation following hospitalization for coronary artery disease. Europace 14, 1287–1293 (2012).

    Article  PubMed  Google Scholar 

  126. McMurray, J. et al. Antiarrhythmic effect of carvedilol after acute myocardial infarction: results of the Carvedilol Post-Infarct Survival Control in Left Ventricular Dysfunction (CAPRICORN) trial. J. Am. Coll. Cardiol. 45, 525–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Ibanez, B. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119–177 (2017).

    Article  Google Scholar 

  128. Collet, J.-P. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 42, 1289–1367 (2020).

    Article  Google Scholar 

  129. Amsterdam, E. A. et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 64, e139–e228 (2014).

    Article  PubMed  Google Scholar 

  130. O’Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

    Article  PubMed  Google Scholar 

  131. Dewilde, W. J. et al. Uninterrupted oral anticoagulation versus bridging in patients with long-term oral anticoagulation during percutaneous coronary intervention: subgroup analysis from the WOEST trial. EuroIntervention 11, 381–390 (2015).

    Article  PubMed  Google Scholar 

  132. Kiviniemi, T. et al. Comparison of additional versus no additional heparin during therapeutic oral anticoagulation in patients undergoing percutaneous coronary intervention. Am. J. Cardiol. 110, 30–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Knuuti, J. et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 41, 407–477 (2019).

    Article  Google Scholar 

  134. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation. Circulation 130, e199–e267 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Luo, C. F., Mo, P., Li, G. Q. & Liu, S. M. Aspirin-omitted dual antithrombotic therapy in non-valvular atrial fibrillation patients presenting with acute coronary syndrome or undergoing percutaneous coronary intervention: results of a meta-analysis. Eur. Heart J. Cardiovasc. Pharmacother. 7, 218–224 (2021).

    Article  PubMed  Google Scholar 

  136. Lopes, R. D. et al. Optimal antithrombotic regimens for patients with atrial fibrillation undergoing percutaneous coronary intervention: an updated network meta-analysis. JAMA Cardiol. 5, 582–589 (2020).

    Article  PubMed  Google Scholar 

  137. Galli, M., Andreotti, F., Porto, I. & Crea, F. Intracranial haemorrhages vs. stent thromboses with direct oral anticoagulant plus single antiplatelet agent or triple antithrombotic therapy: a meta-analysis of randomized trials in atrial fibrillation and percutaneous coronary intervention/acute coronary syndrome patients. Europace 22, 538–546 (2020).

    Article  PubMed  Google Scholar 

  138. Potpara, T. S. et al. Revisiting the effects of omitting aspirin in combined antithrombotic therapies for atrial fibrillation and acute coronary syndromes or percutaneous coronary interventions: meta-analysis of pooled data from the PIONEER AF-PCI, RE-DUAL PCI, and AUGUSTUS trials. Europace 22, 33–46 (2020).

    Article  PubMed  Google Scholar 

  139. Cannon, C. P. et al. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N. Engl. J. Med. 377, 1513–1524 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Gibson, C. M. et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N. Engl. J. Med. 375, 2423–2434 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Lopes, R. D. et al. Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation. N. Engl. J. Med. 380, 1509–1524 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Vranckx, P. et al. Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): a randomised, open-label, phase 3b trial. Lancet 394, 1335–1343 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Lupercio, F. et al. P2Y(12) inhibitors with oral anticoagulation for percutaneous coronary intervention with atrial fibrillation: a systematic review and meta-analysis. Heart 106, 575–583 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Camm, A. J. et al. A randomized active-controlled study comparing the efficacy and safety of vernakalant to amiodarone in recent-onset atrial fibrillation. J. Am. Coll. Cardiol. 57, 313–321 (2011).

    Article  PubMed  Google Scholar 

  145. Roy, D. et al. Vernakalant hydrochloride for rapid conversion of atrial fibrillation: a phase 3, randomized, placebo-controlled trial. Circulation 117, 1518–1525 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Echt, D. S. et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. N. Engl. J. Med. 324, 781–788 (1991).

    Article  CAS  PubMed  Google Scholar 

  147. Podrid, P. J. & Anderson, J. L. Safety and tolerability of long-term propafenone therapy for supraventricular tachyarrhythmias. Am. J. Cardiol. 78, 430–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Connolly, S. et al. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet 367, 1903–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Jewitt, D. E., Balcon, R., Raftery, E. B. & Oram, S. Incidence and management of supraventricular arrhythmias after acute myocardial infarction. Lancet 2, 734–738 (1967).

    Article  CAS  PubMed  Google Scholar 

  150. Behar, S., Zahavi, Z., Goldbourt, U. & Reicher-Reiss, H. Long-term prognosis of patients with paroxysmal atrial fibrillation complicating acute myocardial infarction. SPRINT Study Group. Eur. Heart J. 13, 45–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  151. Pedersen, O. D., Bagger, H., Køber, L. & Torp-Pedersen, C. The occurrence and prognostic significance of atrial fibrillation/-flutter following acute myocardial infarction. TRACE Study group. TRAndolapril Cardiac Evalution. Eur. Heart J. 20, 748–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Pizzetti, F. et al. Incidence and prognostic significance of atrial fibrillation in acute myocardial infarction: the GISSI-3 data. Heart 86, 527–532 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Watanabe, H. et al. Close bidirectional relationship between chronic kidney disease and atrial fibrillation: the Niigata preventive medicine study. Am. Heart J. 158, 629–636 (2009).

    Article  PubMed  Google Scholar 

  154. Le-Rademacher, J. G., Therneau, T. M. & Ou, F.-S. The utility of multistate models: a flexible framework for time-to-event data. Curr. Epidemiol. Rep. 9, 182–189 (2022).

    Article  Google Scholar 

  155. Evans, D. M. & Davey Smith, G. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genomics Hum. Genet. 16, 327–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    Article  PubMed  Google Scholar 

  157. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zheng, J. et al. Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep. 4, 330–345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Richmond, R. C. & Davey Smith, G. Commentary: orienting causal relationships between two phenotypes using bidirectional Mendelian randomization. Int. J. Epidemiol. 48, 907–911 (2019).

    Article  PubMed  Google Scholar 

  160. Yan, T. et al. Coronary artery disease and atrial fibrillation: a bidirectional Mendelian randomization study. J. Cardiovasc. Dev. Dis. 9, 69 (2022).

    PubMed  PubMed Central  Google Scholar 

  161. Kwok, M. K. & Schooling, C. M. Mendelian randomization study on atrial fibrillation and cardiovascular disease subtypes. Sci. Rep. 11, 18682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.C.F. is supported by Aarhus University, Region Midtjyllands Sundhedsvidenskabelig Forskningsfond (A3116), Helsefonden (20-B-0206) and the Danish Agency for Higher Education and Science (EliteForsk 2025-00072B). S.R.P. is supported by NIH grant 5R01HL128914-04. H.L. is supported by the European Commission Grant (Agreement No 847770) and NIH U01AG068221. L.T. is supported by the American Heart Association (18SFRN34150007). E.J.B. is supported by the NIH (2R01 HL092577, 1R01 HL141434 01A1, 2U54HL120163, 1R01AG066010 and 1R01AG066914) and the American Heart Association (18SFRN34110082). J.K. received funding from the Marie Sklodowska-Curie Actions under the European Union’s Horizon 2020 research and innovation programme (agreement No. 838259).

Author information

Authors and Affiliations

Authors

Contributions

T.C.F., E.J.B. and J.K. researched data for the article. T.C.F., S.R.P., H.L., E.J.B. and J.K. discussed the content of the article. T.C.F. and S.R.P. wrote the manuscript. C.C.D., H.L., L.T., E.J.B. and J.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jelena Kornej.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Dobromir Dobrev, Francisco Marín and Michiel Rienstra for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

Several PubMed searches were conducted, using different combinations of MESH terms and non-MESH terms. These searches yielded 14,645 studies that were screened by title, after which 723 studies were eligible for inclusion and assessed by abstract; of these, 516 studies were excluded and 207 were assessed by full text. Finally, 172 studies were included in the Review.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederiksen, T.C., Dahm, C.C., Preis, S.R. et al. The bidirectional association between atrial fibrillation and myocardial infarction. Nat Rev Cardiol 20, 631–644 (2023). https://doi.org/10.1038/s41569-023-00857-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00857-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing