Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.

Key points

  • Cyclic nucleotide phosphodiesterases (PDEs) hydrolyse cAMP and cGMP to modulate the neurohormonal regulation of cardiac function.

  • Multiple PDE isozymes with various enzymatic properties and subcellular localizations finely tune local pools of cyclic nucleotides and control specific cardiac functions.

  • Changes in PDE expression, activity and subcellular localization during cardiac hypertrophy and heart failure can contribute to disease progression.

  • Despite limited success in the clinical arena, evidence in the literature continues to point to inhibitors or activators of specific PDEs as promising therapies for heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subcellular localization and activities of PDE isoforms in macromolecular complexes in cardiomyocytes.
Fig. 2: Enzymes involved in cAMP and cGMP synthesis and degradation in cardiomyocytes.

Similar content being viewed by others

References

  1. McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 24, 4–131 (2022).

    Google Scholar 

  2. Hartupee, J. & Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 14, 30–38 (2017).

    Article  CAS  Google Scholar 

  3. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  Google Scholar 

  4. El-Armouche, A. & Eschenhagen, T. β-Adrenergic stimulation and myocardial function in the failing heart. Heart Fail. Rev. 14, 225–241 (2009).

    Article  CAS  Google Scholar 

  5. McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  Google Scholar 

  6. Armstrong, P. W. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 382, 1883–1893 (2020).

    Article  CAS  Google Scholar 

  7. Petraina, A. et al. Cyclic GMP modulating drugs in cardiovascular diseases: Mechanism-based network pharmacology. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab240 (2021).

    Article  Google Scholar 

  8. Anton, S. E. et al. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 185, 1130–1142 (2022).

    Article  CAS  Google Scholar 

  9. Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530 (2020).

    Article  CAS  Google Scholar 

  10. Kokkonen, K. & Kass, D. A. Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. Annu. Rev. Pharmacol. Toxicol. 57, 455–479 (2017).

    Article  CAS  Google Scholar 

  11. Lohse, M. J., Engelhardt, S. & Eschenhagen, T. What is the role of β-adrenergic signaling in heart failure? Circ. Res. 93, 896–906 (2003).

    Article  CAS  Google Scholar 

  12. Nikolaev, V. O. et al. β2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327, 1653–1657 (2010).

    Article  CAS  Google Scholar 

  13. Katz, S. D. et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111, 310–314 (2005).

    Article  Google Scholar 

  14. Dickey, D. M., Dries, D. L., Margulies, K. B. & Potter, L. R. Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J. Mol. Cell Cardiol. 52, 727–732 (2012).

    Article  CAS  Google Scholar 

  15. Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med. 325, 1468–1475 (1991).

    Article  CAS  Google Scholar 

  16. Redfield, M. M. et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309, 1268–1277 (2013).

    Article  CAS  Google Scholar 

  17. Preedy, M. E. J. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure. Cardiovasc. Drugs Ther. 34, 401–417 (2020).

    Article  CAS  Google Scholar 

  18. Chen, S. & Yan, C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin. Drug Discov. 16, 183–196 (2021).

    Article  CAS  Google Scholar 

  19. Boivin, B. et al. Functional β-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc. Res. 71, 69–78 (2006).

    Article  CAS  Google Scholar 

  20. Nash, C. A., Wei, W., Irannejad, R. & Smrcka, A. V. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCe to regulate cardiac hypertrophy. Elife 8, e48167 (2019).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. Intracellular β1-adrenergic receptors and organic cation transporter 3 mediate phospholamban phosphorylation to enhance cardiac contractility. Circ. Res. 128, 246–261 (2021).

    Article  CAS  Google Scholar 

  22. Guellich, A., Mehel, H. & Fischmeister, R. Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflügers Arch. 466, 1163–1175 (2014).

    Article  CAS  Google Scholar 

  23. Xiang, Y., Rybin, V. O., Steinberg, S. F. & Kobilka, B. Caveolar localization dictates physiologic signaling of β2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem. 277, 34280–34286 (2002).

    Article  CAS  Google Scholar 

  24. Ostrom, R. S. et al. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J. Biol. Chem. 276, 42063–42069 (2001).

    Article  CAS  Google Scholar 

  25. Rybin, V. O., Xu, X., Lisanti, M. P. & Steinberg, S. F. Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae: a mechanism to functionally regulate the cAMP signaling pathway. J. Biol. Chem. 275, 41447–41457 (2000).

    Article  CAS  Google Scholar 

  26. Timofeyev, V. et al. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ. Res. 112, 1567–1576 (2013).

    Article  CAS  Google Scholar 

  27. Wang, Z. et al. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis. 7, e2198 (2016).

    Article  CAS  Google Scholar 

  28. Di Benedetto, G., Scalzotto, E., Mongillo, M. & Pozzan, T. Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 17, 965–975 (2013).

    Article  Google Scholar 

  29. Zhang, Y. et al. Cardiomyocyte PKA ablation enhances basal contractility while eliminates cardiac β-adrenergic response without adverse effects on the heart. Circ. Res. 12, 1760–1777 (2019).

    Article  Google Scholar 

  30. Liu, G. et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature 577, 695–700 (2020).

    Article  CAS  Google Scholar 

  31. Leroy, J. & Fischmeister, R. β-Adrenergic regulation of the L-type Ca2+ current: the missing link eventually discovered. Med. Sci. 36, 569–572 (2020).

    Google Scholar 

  32. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  Google Scholar 

  33. Hayes, J. S., Brunton, L. L., Brown, J. H., Reese, J. B. & Mayer, S. E. Hormonally specific expression of cardiac protein kinase activity. Proc. Natl Acad. Sci. USA 76, 1570–1574 (1979).

    Article  CAS  Google Scholar 

  34. Lehmann, L. H. et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 24, 62–72 (2018).

    Article  CAS  Google Scholar 

  35. Chang, C. W. et al. Acute β-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays Gq-induced transcriptional activation. J. Biol. Chem. 288, 192–204 (2013).

    Article  CAS  Google Scholar 

  36. Ha, C. H. et al. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc. Natl Acad. Sci. USA 107, 15467–15472 (2010).

    Article  CAS  Google Scholar 

  37. Backs, J. et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J. Cell Biol. 195, 403–415 (2011).

    Article  CAS  Google Scholar 

  38. Antos, C. L. et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. 89, 997–1004 (2001).

    Article  CAS  Google Scholar 

  39. Zhang, X. et al. Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ. Res. 112, 498–509 (2013).

    Article  CAS  Google Scholar 

  40. Tomita, H. et al. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to β-adrenergic receptor stimulation. Circ. Res. 93, 12–22 (2003).

    Article  CAS  Google Scholar 

  41. Bedioune, I. et al. PDE4 and mAKAPβ are nodal organizers of β2-AR nuclear PKA signaling in cardiac myocytes. Cardiovasc. Res. 114, 1499–1511 (2018).

    Article  CAS  Google Scholar 

  42. DiFrancesco, D. A brief history of pacemaking. Front. Physiol. 10, 1599 (2019).

    Article  Google Scholar 

  43. Brand, T. The popeye domain containing genes and their function as cAMP effector proteins in striated muscle. J. Cardiovasc. Dev. Dis. 5, 18 (2018).

    Article  Google Scholar 

  44. Robichaux, W. G. III & Cheng, X. Intracellular cAMP sensor EPAC: physiology, pathophysiology, and therapeutics development. Physiol. Rev. 98, 919–1053 (2018).

    Article  CAS  Google Scholar 

  45. Fujita, T., Umemura, M., Yokoyama, U., Okumura, S. & Ishikawa, Y. The role of Epac in the heart. Cell. Mol. Life Sci. 74, 591–606 (2017).

    Article  CAS  Google Scholar 

  46. Lezoualc’h, F., Fazal, L., Laudette, M. & Conte, C. Cyclic AMP sensor EPAC proteins and their role in cardiovascular function and disease. Circ. Res. 118, 881–897 (2016).

    Article  Google Scholar 

  47. Morel, E. et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ. Res. 97, 1296–1304 (2005).

    Article  CAS  Google Scholar 

  48. Métrich, M. et al. Epac mediates β-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ. Res. 102, 959–965 (2008).

    Article  Google Scholar 

  49. Pereira, L. et al. Epac2 mediates cardiac β1-adrenergic dependent SR Ca2+ leak and arrhythmia. Circulation 127, 913–922 (2013).

    Article  CAS  Google Scholar 

  50. Zhang, L. et al. Phospholipase Cε hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell 153, 216–227 (2013).

    Article  CAS  Google Scholar 

  51. Zhang, L., Malik, S., Kelley, G. G., Kapiloff, M. S. & Smrcka, A. V. Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPβ) and integrates multiple hypertrophic stimuli in cardiac myocytes. J. Biol. Chem. 286, 23012–23021 (2011).

    Article  CAS  Google Scholar 

  52. Dodge-Kafka, K. L. et al. The protein kinase A anchoring protein mAKAP co-ordinates two integrated cAMP effector pathways. Nature 437, 574–578 (2005).

    Article  CAS  Google Scholar 

  53. Fazal, L. et al. The multifunctional mitochondrial Epac1 controls myocardial cell death. Circ. Res. 120, 645–657 (2017).

    Article  CAS  Google Scholar 

  54. Feil, R., Lehners, M., Stehle, D. & Feil, S. Visualising and understanding cGMP signals in the cardiovascular system. Br. J. Pharmacol. 179, 2394–2412 (2022).

    Article  CAS  Google Scholar 

  55. Manfra, O. et al. CNP regulates cardiac contractility and increases cGMP near both SERCA and TnI - difference from BNP visualized by targeted cGMP biosensors. Cardiovasc. Res. 118, 1506–1519 (2022).

    Article  CAS  Google Scholar 

  56. Subramanian, H. et al. Distinct submembrane localisation compartmentalises cardiac NPR1 and NPR2 signalling to cGMP. Nat. Commun. 9, 2446 (2018).

    Article  Google Scholar 

  57. Moltzau, L. R. et al. Different compartmentation of responses to brain natriuretic peptide and C-type natriuretic peptide in failing rat ventricle. J. Pharmacol. Exp. Ther. 350, 681–690 (2014).

    Article  Google Scholar 

  58. Méry, P.-F., Lohmann, S. M., Walter, U. & Fischmeister, R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc. Natl Acad. Sci. USA 88, 1197–1201 (1991).

    Article  Google Scholar 

  59. Raeymaekers, L., Hofmann, F. & Casteels, R. Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem. J. 252, 269–273 (1988).

    Article  CAS  Google Scholar 

  60. Lee, D. I. et al. PDE5A suppression of acute β-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res. Cardiol. 105, 337–347 (2010).

    Article  CAS  Google Scholar 

  61. Thoonen, R. et al. Molecular screen identifies cardiac myosin-binding protein-C as a protein kinase G-Ia substrate. Circ. Heart Fail. 8, 1115–1122 (2015).

    Article  CAS  Google Scholar 

  62. Kruger, M. et al. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ. Res. 104, 87–94 (2009).

    Article  Google Scholar 

  63. Fiedler, B. et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc. Natl Acad. Sci. USA 99, 11363–11368 (2002).

    Article  CAS  Google Scholar 

  64. Takimoto, E. et al. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J. Clin. Invest. 119, 408–420 (2009).

    CAS  Google Scholar 

  65. Tokudome, T. et al. Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation 117, 2329–2339 (2008).

    Article  CAS  Google Scholar 

  66. Kinoshita, H. et al. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ. Res. 106, 1849–1860 (2010).

    Article  CAS  Google Scholar 

  67. Ranek, M. J. et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature 566, 264–269 (2019).

    Article  CAS  Google Scholar 

  68. Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A. & Wang, X. Protein kinase G positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128, 365–376 (2013).

    Article  CAS  Google Scholar 

  69. Ranek, M. J. et al. CHIP phosphorylation by protein kinase G enhances protein quality control and attenuates cardiac ischemic injury. Nat. Commun. 11, 5237 (2020).

    Article  CAS  Google Scholar 

  70. Frantz, S. et al. Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. Eur. Heart J. 34, 1233–1244 (2013).

    Article  CAS  Google Scholar 

  71. Lukowski, R. et al. Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc. Natl Acad. Sci. USA 107, 5646–5651 (2010).

    Article  CAS  Google Scholar 

  72. Patrucco, E. et al. Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc. Natl Acad. Sci. USA 111, 12925–12929 (2014).

    Article  CAS  Google Scholar 

  73. Bolger, G. B. The PDE-opathies: diverse phenotypes produced by a functionally related multigene family. Trends Genet. 37, 669–681 (2021).

    Article  CAS  Google Scholar 

  74. Gardner, C., Robas, N., Cawkill, D. & Fidock, M. Cloning and characterization of the human and mouse PDE7B, a novel cAMP-specific cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 272, 186–192 (2000).

    Article  CAS  Google Scholar 

  75. Han, P., Zhu, X. Y. & Michaeli, T. Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. J. Biol. Chem. 272, 16152–16157 (1997).

    Article  CAS  Google Scholar 

  76. Michaeli, T. et al. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J. Biol. Chem. 268, 12925–12932 (1993).

    Article  CAS  Google Scholar 

  77. Loughney, K., Taylor, J. & Florio, V. A. 3′,5′-Cyclic nucleotide phosphodiesterase 11A: localization in human tissues. Int. J. Impot. Res. 17, 320–325 (2005).

    Article  CAS  Google Scholar 

  78. Aravind, L. & Ponting, C. P. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22, 458–459 (1997).

    Article  CAS  Google Scholar 

  79. Martinez, S. E. et al. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc. Natl Acad. Sci. USA 99, 13260–13265 (2002).

    Article  CAS  Google Scholar 

  80. Turko, I. V., Francis, S. H. & Corbin, J. D. Binding of cGMP to both allosteric sites of cGMP-binding cGMP-specific phosphodiesterase (PDE5) is required for its phosphorylation. Biochem. J. 329, 505–510 (1998).

    Article  CAS  Google Scholar 

  81. Soderling, S. H., Bayuga, S. J. & Beavo, J. A. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc. Natl Acad. Sci. USA 96, 7071–7076 (1999).

    Article  CAS  Google Scholar 

  82. Omori, K. & Kotera, J. Overview of PDEs and their regulation. Circ. Res. 100, 309–327 (2007).

    Article  CAS  Google Scholar 

  83. Baillie, G. S., Tejeda, G. S. & Kelly, M. P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat. Rev. Drug Discov. 18, 770–796 (2019).

    Article  CAS  Google Scholar 

  84. Keravis, T. & Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol. 165, 1288–1305 (2012).

    Article  CAS  Google Scholar 

  85. Francis, S. H., Blount, M. A. & Corbin, J. D. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91, 651–690 (2011).

    Article  CAS  Google Scholar 

  86. Conti, M. & Beavo, J. A. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Ann. Rev. Biochem. 76, 481–511 (2007).

    Article  CAS  Google Scholar 

  87. Shi, Q. et al. Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced bAR/arrestin/PDE4 complexes. Cardiovasc. Res. 113, 656–670 (2017).

    Article  CAS  Google Scholar 

  88. Mika, D., Richter, W., Westenbroek, R. E., Catterall, W. A. & Conti, M. PDE4B mediates local feedback regulation of b1-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. J. Cell Sci. 127, 1033–1042 (2014).

    CAS  Google Scholar 

  89. Berthouze-Duquesnes, M. et al. Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtypes differential effects on cardiac hypertrophic signaling. Cell. Signal. 25, 970–980 (2013).

    Article  CAS  Google Scholar 

  90. De Arcangelis, V., Liu, R., Soto, D. & Xiang, Y. Differential association of phosphodiesterase 4D isoforms with β2-adrenoceptor in cardiac myocytes. J. Biol. Chem. 284, 33824–33832 (2009).

    Article  Google Scholar 

  91. Richter, W. et al. Signaling from β1-and β2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J. 27, 384–393 (2008).

    Article  CAS  Google Scholar 

  92. Rochais, F. et al. A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ. Res. 98, 1081–1088 (2006).

    Article  CAS  Google Scholar 

  93. Baillie, G. S. et al. β-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates β-adrenoceptor switching from Gs to Gi. Proc. Natl Acad. Sci. USA 100, 941–945 (2003).

    Article  Google Scholar 

  94. Perry, S. J. et al. Targeting of cyclic AMP degradation to b2-adrenergic receptors by β-arrestins. Science 298, 834–836 (2002).

    Article  CAS  Google Scholar 

  95. Liu, S. et al. Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proc. Natl Acad. Sci. USA 109, 6578–6583 (2012).

    Article  CAS  Google Scholar 

  96. Zhang, Y., Knight, W., Chen, S., Mohan, A. & Yan, C. Multiprotein complex with TRPC (transient receptor potential-canonical) channel, PDE1C (phosphodiesterase 1C), and A2R (adenosine A2 receptor) plays a critical role in regulating cardiomyocyte cAMP and survival. Circulation 138, 1988–2002 (2018).

    Article  CAS  Google Scholar 

  97. Lee, D. I. et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519, 472–476 (2015).

    Article  CAS  Google Scholar 

  98. Castro, L. R. V., Schittl, J. & Fischmeister, R. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ. Res. 107, 1232–1240 (2010).

    Article  CAS  Google Scholar 

  99. Castro, L. R., Verde, I., Cooper, D. M. F. & Fischmeister, R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113, 2221–2228 (2006).

    Article  CAS  Google Scholar 

  100. Leroy, J. et al. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias. J. Clin. Invest. 121, 2651–2661 (2011).

    Article  CAS  Google Scholar 

  101. Terrenoire, C., Houslay, M. D., Baillie, G. S. & Kass, R. S. The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J. Biol. Chem. 284, 9140–9146 (2009).

    Article  CAS  Google Scholar 

  102. Bastug-Ozel, Z. et al. Heart failure leads to altered b2-adrenoceptor/cAMP dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain. Cardiovasc. Res. 115, 546–555 (2019).

    Article  Google Scholar 

  103. Beca, S. et al. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with SERCA2a-signaling complexes in mouse heart. Circ. Res. 112, 289–297 (2013).

    Article  CAS  Google Scholar 

  104. Beca, S. et al. Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ. Res. 109, 1024–1030 (2011).

    Article  CAS  Google Scholar 

  105. Lehnart, S. E. et al. Phosphodiesterase 4D deficiency in the ryanodine receptor complex promotes heart failure and arrhythmias. Cell 123, 23–35 (2005).

    Article  Google Scholar 

  106. Lugnier, C. et al. Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolated cardiac nuclei. Biochim. Biophys. Acta 1472, 431–446 (1999).

    Article  CAS  Google Scholar 

  107. Barbagallo, F. et al. Genetically encoded biosensors reveal PKA hyperphosphorylation on the myofilaments in rabbit heart failure. Circ. Res. 119, 931–943 (2016).

    Article  CAS  Google Scholar 

  108. Verde, I. et al. Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J. Biol. Chem. 276, 11189–11198 (2001).

    Article  CAS  Google Scholar 

  109. Dodge, K. L. et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 20, 1921–1930 (2001).

    Article  CAS  Google Scholar 

  110. Liu, D. et al. PDE2 regulates membrane potential, respiration and permeability transition of rodent subsarcolemmal cardiac mitochondria. Mitochondrion 47, 64–75 (2019).

    Article  CAS  Google Scholar 

  111. Monterisi, S. et al. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. Elife 6, e21374 (2017).

    Article  Google Scholar 

  112. Takimoto, E. et al. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ. Res. 96, 100–109 (2005).

    Article  CAS  Google Scholar 

  113. Fischmeister, R. et al. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ. Res. 99, 816–828 (2006).

    Article  CAS  Google Scholar 

  114. Zaccolo, M., Zerio, A. & Lobo, M. J. Subcellular organization of the cAMP signaling pathway. Pharmacol. Rev. 73, 278–309 (2021).

    Article  CAS  Google Scholar 

  115. Cuello, F. & Nikolaev, V. O. Cardiac cGMP signaling in health and disease: location, location, location. J. Cardiovasc. Pharmacol. 75, 399–409 (2020).

    Article  CAS  Google Scholar 

  116. Ghigo, A. & Mika, D. cAMP/PKA signaling compartmentalization in cardiomyocytes: lessons from FRET-based biosensors. J. Mol. Cell Cardiol. 131, 112–121 (2019).

    Article  CAS  Google Scholar 

  117. Chen, S., Knight, W. E. & Yan, C. Roles of PDE1 in pathological cardiac remodeling and dysfunction. J. Cardiovasc. Dev. Dis. 5, 22 (2018).

    Article  Google Scholar 

  118. Hambleton, R. et al. Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP-hydrolytic activity in subcellular fractions of human myocardium. J. Biol. Chem. 280, 39168–39174 (2005).

    Article  CAS  Google Scholar 

  119. Lugnier, C., Gauthier, C., Lebec, A. & Soustre, H. Cyclic nucleotide phosphodiesterases from frog atrial fibers: isolation and drug sensitivities. Am. J. Physiol. 262, H654–H660 (1992).

    CAS  Google Scholar 

  120. Vandeput, F. et al. Cyclic nucleotide phosphodiesterase PDE1C1in human cardiac myocytes. J. Biol. Chem. 282, 32749–32757 (2007).

    Article  CAS  Google Scholar 

  121. Bode, D. C., Kanter, J. R. & Brunton, L. L. Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circ. Res. 68, 1070–1079 (1991).

    Article  CAS  Google Scholar 

  122. Miller, C. L. et al. Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Res. Cardiol. 106, 1023–1039 (2011).

    Article  CAS  Google Scholar 

  123. Knight, W. et al. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc. Natl Acad. Sci. USA 113, E7116–E7125 (2016).

    Article  CAS  Google Scholar 

  124. Miller, C. L. et al. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ. Res. 105, 956–964 (2009).

    Article  CAS  Google Scholar 

  125. Wu, M. P. et al. Vinpocetine attenuates pathological cardiac remodeling by inhibiting cardiac hypertrophy and fibrosis. Cardiovasc. Drugs Ther. 31, 157–166 (2017).

    Article  Google Scholar 

  126. Zhang, H. et al. PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy. Sci. Adv. 5, eaaw5870 (2019).

    Article  Google Scholar 

  127. Hashimoto, T. et al. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition - a translational study in the dog and rabbit. Circulation 138, 1974–1987 (2018).

    Article  CAS  Google Scholar 

  128. Muller, G. K. et al. PDE1 inhibition modulates Cav1.2 channel to stimulate cardiomyocyte contraction. Circ. Res. 129, 872–886 (2021).

    Article  CAS  Google Scholar 

  129. Gilotra, N. A. et al. Acute hemodynamic effects and tolerability of phosphodiesterase-1 inhibition with ITI-214 in human systolic heart failure. Circ. Heart Fail. 14, e008236 (2021).

    Article  CAS  Google Scholar 

  130. Martins, T. J., Mumby, M. C. & Beavo, J. A. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J. Biol. Chem. 257, 1973–1979 (1982).

    Article  CAS  Google Scholar 

  131. Hartzell, H. C. & Fischmeister, R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323, 273–275 (1986).

    Article  CAS  Google Scholar 

  132. Dittrich, M. et al. Local response of L-type Ca2+ current to nitric oxide in frog ventricular myocytes. J. Physiol. 534, 109–121 (2001).

    Article  CAS  Google Scholar 

  133. Vandecasteele, G., Verde, I., Rucker-Martin, C., Donzeau-Gouge, P. & Fischmeister, R. Cyclic GMP regulation of the L-type Ca2+ channel current in human atrial myocytes. J. Physiol. 533, 329–340 (2001).

    Article  CAS  Google Scholar 

  134. Rosman, G. J. et al. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene 191, 89–95 (1997).

    Article  CAS  Google Scholar 

  135. Yang, Q. et al. A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem. Biophys. Res. Commun. 205, 1850–1858 (1994).

    Article  CAS  Google Scholar 

  136. Sonnenburg, W. K., Mullaney, P. J. & Beavo, J. A. Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA -identification and distribution of isozyme variants. J. Biol. Chem. 266, 17655–17661 (1991).

    Article  CAS  Google Scholar 

  137. Pyne, N. J., Cooper, M. E. & Houslay, M. D. Identification and characterization of both the cytosolic and particulate forms of cyclic GMP-stimulated cyclic AMP phosphodiesterase from rat liver. Biochem. J. 234, 325–334 (1986).

    Article  CAS  Google Scholar 

  138. Vettel, C. et al. PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways. Am. J. Physiol. Heart Circ. Physiol. 306, H1246–H1252 (2014).

    Article  CAS  Google Scholar 

  139. Chen, W. et al. Endothelial actions of ANP enhance myocardial inflammatory infiltration in the early phase after acute infarction. Circ. Res. 119, 237–248 (2016).

    Article  CAS  Google Scholar 

  140. Favot, L., Keravis, T. & Lugnier, C. Modulation of VEGF-induced endothelial cell cycle protein expression through cyclic AMP hydrolysis by PDE2 and PDE4. Thromb. Haemost. 92, 634–645 (2004).

    Article  CAS  Google Scholar 

  141. Keravis, T., Komas, N. & Lugnier, C. Cyclic nucleotide hydrolysis in bovine aortic endothelial cells in culture: differential regulation in cobblestone and spindle phenotypes. J. Vasc. Res. 37, 235–249 (2000).

    Article  CAS  Google Scholar 

  142. Mika, D. et al. Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes. Cardiovasc. Res. 100, 336–346 (2013).

    Article  CAS  Google Scholar 

  143. Aye, T. T. et al. Reorganized PKA-AKAP associations in the failing human heart. J. Mol. Cell Cardiol. 52, 511–518 (2012).

    Article  CAS  Google Scholar 

  144. Mehel, H. et al. Phoshodiesterase-2 is upregulated in human failing hearts and blunts β-adrenergic responses in cardiomyocytes. J. Am. Coll. Cardiol. 62, 1596–1606 (2013).

    Article  CAS  Google Scholar 

  145. Galindo-Tovar, A., Vargas, M. L. & Kaumann, A. J. Phosphodiesterase PDE2 activity, increased by isoprenaline, does not reduce β-adrenoceptor-mediated chronotropic and inotropic effects in rat heart. Naunyn Schmiedebergs Arch. Pharmacol. 391, 571–585 (2018).

    Article  CAS  Google Scholar 

  146. Sprenger, J. U. et al. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat. Commun. 6, 6965 (2015).

    Article  CAS  Google Scholar 

  147. Zoccarato, A. et al. Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ. Res. 117, 707–719 (2015).

    Article  CAS  Google Scholar 

  148. Baliga, R. S. et al. Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure. Proc. Natl Acad. Sci. USA 115, E7428–E7437 (2018).

    Article  CAS  Google Scholar 

  149. Liu, K. et al. Phosphodiesterase 2A as a therapeutic target to restore cardiac neurotransmission during sympathetic hyperactivity. JCI Insight 3, 98694 (2018).

    Article  Google Scholar 

  150. Vettel, C. et al. Phosphodiesterase 2 protects against catecholamine-induced arrhythmias and preserves contractile function after myocardial infarction. Circ. Res. 120, 120–132 (2017).

    Article  CAS  Google Scholar 

  151. Wagner, M. et al. Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression. Int. J. Mol. Sci. 22, 4816 (2021).

    Article  CAS  Google Scholar 

  152. Ahmad, F. et al. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J. Biol. Chem. 290, 6763–6776 (2015).

    Article  CAS  Google Scholar 

  153. Wechsler, J. et al. Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J. Biol. Chem. 277, 38072–38078 (2002).

    Article  CAS  Google Scholar 

  154. Sun, B. et al. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell. Signal. 19, 1765–1771 (2007).

    Article  CAS  Google Scholar 

  155. Movsesian, M., Ahmad, F. & Hirsch, E. Functions of PDE3 isoforms in cardiac muscle. J. Cardiovasc. Dev. Dis. 5, 10 (2018).

    Article  Google Scholar 

  156. Chung, Y. W. et al. Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc. Natl Acad. Sci. USA 112, E2253–E2262 (2015).

    Article  CAS  Google Scholar 

  157. Leroy, J. et al. Spatiotemporal dynamics of β-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ. Res. 102, 1091–1100 (2008).

    Article  CAS  Google Scholar 

  158. Verde, I., Vandecasteele, G., Lezoualc’h, F. & Fischmeister, R. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br. J. Pharmacol. 127, 65–74 (1999).

    Article  CAS  Google Scholar 

  159. Ono, K. & Trautwein, W. Potentiation by cyclic GMP of β-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J. Physiol. 443, 387–404 (1991).

    Article  CAS  Google Scholar 

  160. Fischmeister, R. & Hartzell, H. C. Regulation of calcium current by low-Km cyclic AMP phosphodiesterases in cardiac cells. Mol. Pharmacol. 38, 426–433 (1990).

    CAS  Google Scholar 

  161. Yano, M. et al. Effect of milrinone on left ventricular relaxation and Ca2+ uptake function of cardiac sarcoplasmic reticulum. Am. J. Physiol. Heart Circ. Physiol. 279, H1898–H1905 (2000).

    Article  CAS  Google Scholar 

  162. Malecot, C., Bers, D. M. & Katzung, B. G. Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: role of the sarcoplasmic reticulum and transmembrane calcium influx. Circ. Res. 59, 151–162 (1986).

    Article  CAS  Google Scholar 

  163. Lugnier, C., Muller, B., Lebec, A., Beaudry, C. & Rousseau, E. Characterization of indolidan-sensitive and rolipram-sensitive cyclic nucleotide phosphodiesterases in canine and human cardiac microsomal fractions. J. Pharmacol. Exp. Ther. 265, 1142–1151 (1993).

    CAS  Google Scholar 

  164. Crambert, G., Fuzesi, M., Garty, H., Karlish, S. & Geering, K. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc. Natl Acad. Sci. USA 99, 11476–11481 (2002).

    Article  CAS  Google Scholar 

  165. Movsesian, M. A., Smith, C. J., Krall, J., Bristow, M. R. & Manganiello, V. C. Sarcoplasmic reticulum-associated cyclic adenosine 5′-monophosphate phosphodiesterase activity in normal and failing human hearts. J. Clin. Invest. 88, 15–19 (1991).

    Article  CAS  Google Scholar 

  166. von der Leyen, H. et al. Mechanism underlying the reduced positive inotropic effects of the phosphodiesterase III inhibitors pimobendan, adibendan and saterinone in failing as compared to nonfailing human cardiac muscle preparations. Naunyn Schmiedebergs Arch. Pharmacol. 344, 90–100 (1991).

    Article  Google Scholar 

  167. Ding, B. et al. Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation 111, 2469–2476 (2005).

    Article  CAS  Google Scholar 

  168. Mika, D. et al. Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J. Mol. Cell Cardiol. 133, 57–66 (2019).

    Article  CAS  Google Scholar 

  169. Abi-Gerges, A. et al. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on β-adrenergic cAMP signals. Circ. Res. 105, 784–792 (2009).

    Article  CAS  Google Scholar 

  170. Ding, B. et al. A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proc. Natl Acad. Sci. USA 102, 14771–14776 (2005).

    Article  CAS  Google Scholar 

  171. Smith, C. J. et al. Downregulation of right ventricular phosphodiesterase PDE-3A mRNA and protein before the development of canine heart failure. Cell Biochem. Biophys. 29, 67–88 (1998).

    Article  CAS  Google Scholar 

  172. Smith, C. J. et al. Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinone-sensitive cAMP phosphodiesterase PDE3A. Circulation 96, 3116–3123 (1997).

    Article  CAS  Google Scholar 

  173. Hanna, R. et al. Cardiac phosphodiesterases are differentially increased in diabetic cardiomyopathy. Life Sci. 283, 119857 (2021).

    Article  CAS  Google Scholar 

  174. Polidovitch, N. et al. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J. Mol. Cell Cardiol. 132, 60–70 (2019).

    Article  CAS  Google Scholar 

  175. Li, E. A., Xi, W., Han, Y. S. & Brozovich, F. V. Phosphodiesterase expression in the normal and failing heart. Arch. Biochem. Biophys. 662, 160–168 (2019).

    Article  CAS  Google Scholar 

  176. Takahashi, K., Osanai, T., Nakano, T., Wakui, M. & Okumura, K. Enhanced activities and gene expression of phosphodiesterase types 3 and 4 in pressure-induced congestive heart failure. Heart Vessel. 16, 249–256 (2002).

    Article  Google Scholar 

  177. Harrison, S. A., Reifsnyder, D. H., Gallis, B., Cadd, G. G. & Beavo, J. A. Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol. Pharmacol. 29, 506–514 (1986).

    CAS  Google Scholar 

  178. Holmes, J. R., Kubo, S. H., Cody, R. J. & Kligfield, P. Milrinone in congestive heart failure: observations on ambulatory ventricular arrhythmias. Am. Heart J. 110, 800–806 (1985).

    Article  CAS  Google Scholar 

  179. DiBianco, R. et al. A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N. Engl. J. Med. 320, 677–683 (1989).

    Article  CAS  Google Scholar 

  180. Sucharov, C. C. et al. A PDE3A promoter polymorphism regulates cAMP-induced transcriptional activity in failing human myocardium. J. Am. Coll. Cardiol. 73, 1173–1184 (2019).

    Article  CAS  Google Scholar 

  181. Amsallem, E., Kasparian, C., Haddour, G., Boissel, J. P. & Nony, P. Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst. Rev. 2005, CD002230 (2005).

    Google Scholar 

  182. Sanada, S. et al. Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors — the role of protein kinase A and p38 mitogen-activated protein kinase. Circulation 104, 705–710 (2001).

    Article  CAS  Google Scholar 

  183. Nakata, T. M., Suzuki, K., Uemura, A., Shimada, K. & Tanaka, R. Contrasting effects of inhibition of phosphodiesterase 3 and 5 on cardiac function and interstitial fibrosis in rats with isoproterenol-induced cardiac dysfunction. J. Cardiovasc. Pharmacol. 73, 195–205 (2019).

    Article  CAS  Google Scholar 

  184. Yan, C., Miller, C. L. & Abe, J. Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ. Res. 100, 489–501 (2007).

    Article  CAS  Google Scholar 

  185. Nash, C. A., Brown, L. M., Malik, S., Cheng, X. & Smrcka, A. V. Compartmentalized cyclic nucleotides have opposing effects on regulation of hypertrophic phospholipase Cepsilon signaling in cardiac myocytes. J. Mol. Cell Cardiol. 121, 51–59 (2018).

    Article  CAS  Google Scholar 

  186. Oikawa, M. et al. Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J. Mol. Cell Cardiol. 64, 11–19 (2013).

    Article  CAS  Google Scholar 

  187. Conti, M. et al. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem. 278, 5493–5496 (2003).

    Article  CAS  Google Scholar 

  188. Cedervall, P., Aulabaugh, A., Geoghegan, K. F., McLellan, T. J. & Pandit, J. Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. Proc. Natl Acad. Sci. USA 112, E1414–E1422 (2015).

    Article  CAS  Google Scholar 

  189. Richter, W. & Conti, M. Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J. Biol. Chem. 277, 40212–40221 (2002).

    Article  CAS  Google Scholar 

  190. Beard, M. B. et al. UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions. J. Biol. Chem. 275, 10349–10358 (2000).

    Article  CAS  Google Scholar 

  191. Hoffmann, R., Baillie, G. S., MacKenzie, S. J., Yarwood, S. J. & Houslay, M. D. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 18, 893–903 (1999).

    Article  CAS  Google Scholar 

  192. Ghigo, A. et al. Phosphoinositide 3-KinaseY protects against catecholamine-induced ventricular arrhythmia through PKA-mediated regulation of distinct phosphodiesterases. Circulation 126, 2073–2083 (2012).

    Article  CAS  Google Scholar 

  193. Rochais, F. et al. Negative feedback exerted by PKA and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes. An in vivo study using adenovirus-mediated expression of CNG channels. J. Biol. Chem. 279, 52095–52105 (2004).

    Article  CAS  Google Scholar 

  194. Mika, D., Richter, W. & Conti, M. A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc. Natl Acad. Sci. USA 112, 2023–2028 (2015).

    Article  CAS  Google Scholar 

  195. Abi-Gerges, A. et al. Selective changes in cytosolic β-adrenergic cAMP signals and L-type calcium channel regulation by phosphodiesterases during cardiac hypertrophy. J. Mol. Cell Cardiol. 150, 109–121 (2021).

    Article  CAS  Google Scholar 

  196. Qvigstad, E. et al. Natriuretic peptides increase β1-adrenoceptor signalling in failing hearts through phosphodiesterase 3 inhibition. Cardiovasc. Res. 85, 763–772 (2010).

    Article  CAS  Google Scholar 

  197. Mika, D., Leroy, J., Vandecasteele, G. & Fischmeister, R. PDEs create local domains of cAMP signaling. J. Mol. Cell Cardiol. 52, 323–329 (2012).

    Article  CAS  Google Scholar 

  198. Berisha, F. et al. cAMP Imaging at ryanodine receptors reveals β2-adrenoceptor driven arrhythmias. Circ. Res. 129, 81–94 (2021).

    Article  CAS  Google Scholar 

  199. Schwinger, R. H. et al. Reduced Ca2+-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J. Mol. Cell Cardiol. 31, 479–491 (1999).

    Article  Google Scholar 

  200. Sande, J. B. et al. Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity. Cardiovasc. Res. 53, 382–391 (2002).

    Article  CAS  Google Scholar 

  201. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).

    Article  CAS  Google Scholar 

  202. Schwinger, R. H. G. et al. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92, 3220–3228 (1995).

    Article  CAS  Google Scholar 

  203. Meyer, M. et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92, 778–784 (1995).

    Article  CAS  Google Scholar 

  204. Yang, J. H., Polanowska-Grabowska, R. K., Smith, J. S., Shields, C. W. T. & Saucerman, J. J. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling. J. Mol. Cell Cardiol. 66C, 83–93 (2013).

    Google Scholar 

  205. Haj Slimane, Z. et al. Control of cytoplasmic and nuclear protein kinase A activity by phosphodiesterases and phosphatases in cardiac myocytes. Cardiovasc. Res. 102, 97–106 (2014).

    Article  CAS  Google Scholar 

  206. Wang, L. et al. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy. Cell. Signal. 27, 908–922 (2015).

    Article  CAS  Google Scholar 

  207. Sin, Y. Y. et al. Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the β-agonist induced hypertrophic response in cardiac myocytes. J. Mol. Cell Cardiol. 50, 872–883 (2011).

    Article  CAS  Google Scholar 

  208. Karam, S. et al. Cardiac overexpression of PDE4B blunts β-adrenergic response and maladaptive remodeling in heart failure. Circulation 142, 161–174 (2020).

    Article  CAS  Google Scholar 

  209. Omar, F. et al. Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proc. Natl Acad. Sci. USA 116, 13320–13329 (2019).

    Article  CAS  Google Scholar 

  210. Rybalkin, S. D., Rybalkina, I. G., Shimizu-Albergine, M., Tang, X. B. & Beavo, J. A. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J. 22, 469–478 (2003).

    Article  CAS  Google Scholar 

  211. Zoraghi, R., Bessay, E. P., Corbin, J. D. & Francis, S. H. Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation. J. Biol. Chem. 280, 12051–12063 (2005).

    Article  CAS  Google Scholar 

  212. Blount, M. A. et al. A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Mol. Pharmacol. 70, 1822–1831 (2006).

    Article  CAS  Google Scholar 

  213. Corbin, J. D., Turko, I. V., Beasley, A. & Francis, S. H. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur. J. Biochem. 267, 2760–2767 (2000).

    Article  CAS  Google Scholar 

  214. Wallis, R. M., Corbin, J. D., Francis, S. H. & Ellis, P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am. J. Cardiol. 83, 3C–12C (1999).

    Article  CAS  Google Scholar 

  215. Corbin, J. et al. Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr. Med. Res. Opin. 19, 747–752 (2003).

    Article  CAS  Google Scholar 

  216. Degen, C. V. et al. The emperor’s new clothes: PDE5 and the heart. PLoS One 10, e0118664 (2015).

    Article  Google Scholar 

  217. Borlaug, B. A., Melenovsky, V., Marhin, T., Fitzgerald, P. & Kass, D. A. Sildenafil inhibits β-adrenergic-stimulated cardiac contractility in humans. Circulation 112, 2642–2649 (2005).

    Article  CAS  Google Scholar 

  218. Mokni, W. et al. Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 5, e14227 (2010).

    Article  CAS  Google Scholar 

  219. Pokreisz, P. et al. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119, 408–416 (2009).

    Article  CAS  Google Scholar 

  220. Nagendran, J. et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116, 238–248 (2007).

    Article  CAS  Google Scholar 

  221. Shan, X. et al. Differential expression of PDE5 in failing and nonfailing human myocardium. Circ. Heart Fail. 5, 79–86 (2012).

    Article  CAS  Google Scholar 

  222. Garcia, A. M. et al. Phosphodiesterase-5 is elevated in failing single ventricle myocardium and affects cardiomyocyte remodeling in vitro. Circ. Heart Fail. 11, e004571 (2018).

    Article  CAS  Google Scholar 

  223. Senzaki, H. et al. Cardiac phosphodiesterase 5 (cGMP-specific) modulates β-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J. 15, 1718–1726 (2001).

    Article  CAS  Google Scholar 

  224. Pofi, R. et al. Everything you ever wanted to know about phosphodiesterase 5 inhibitors and the heart (but never dared ask): how do they work? J. Endocrinol. Invest. 39, 131–142 (2016).

    Article  CAS  Google Scholar 

  225. Kumar, P., Francis, G. S. & Tang, W. H. Phosphodiesterase 5 inhibition in heart failure: mechanisms and clinical implications. Nat. Rev. Cardiol. 6, 349–355 (2009).

    Article  CAS  Google Scholar 

  226. Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11, 214–222 (2005).

    Article  CAS  Google Scholar 

  227. Zhang, M. et al. Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell. Signal. 20, 2231–2236 (2008).

    Article  CAS  Google Scholar 

  228. Koitabashi, N. et al. Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation: Novel mechanism of cardiac stress modulation by PDE5 inhibition. J. Mol. Cell Cardiol. 48, 713–724 (2010).

    Article  CAS  Google Scholar 

  229. Nishida, M. et al. Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J. Biol. Chem. 285, 13244–13253 (2010).

    Article  CAS  Google Scholar 

  230. Zhang, M. et al. Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5. J. Am. Coll. Cardiol. 56, 2021–2030 (2010).

    Article  CAS  Google Scholar 

  231. Blanton, R. M. et al. Protein kinase G Ia inhibits pressure overload–induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J. Am. Heart Assoc. 1, e003731 (2012).

    Article  Google Scholar 

  232. Salloum, F. N. et al. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am. J. Physiol. Heart Circ. Physiol. 294, H1398–H1406 (2008).

    Article  CAS  Google Scholar 

  233. Ockaili, R., Salloum, F., Hawkins, J. & Kukreja, R. C. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. Am. J. Physiol. Heart Circ. Physiol. 283, H1263–H1269 (2002).

    Article  CAS  Google Scholar 

  234. Salloum, F. N., Ockaili, R. A., Wittkamp, M., Marwaha, V. R. & Kukreja, R. C. Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial KATP channels in rabbits. J. Mol. Cell Cardiol. 40, 405–411 (2006).

    Article  CAS  Google Scholar 

  235. Das, A., Xi, L. & Kukreja, R. C. Protein kinase G dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3b. J. Biol. Chem. 283, 29572–29585 (2008).

    Article  CAS  Google Scholar 

  236. Lawless, M. et al. Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. Sci. Rep. 9, 6801 (2019).

    Article  Google Scholar 

  237. Hutchings, D. C. et al. PDE5 inhibition suppresses ventricular arrhythmias by reducing SR Ca2+ content. Circ. Res. 129, 650–665 (2021).

    Article  CAS  Google Scholar 

  238. Sasaki, H. et al. PDE5 inhibitor efficacy is estrogen dependent in female heart disease. J. Clin. Invest. 124, 2464–2471 (2014).

    Article  CAS  Google Scholar 

  239. Fukuma, N. et al. Estrogen receptor-a non-nuclear signaling confers cardioprotection and is essential to cGMP-PDE5 inhibition efficacy. JACC Basic Transl. Sci. 5, 282–295 (2020).

    Article  Google Scholar 

  240. Geelen, P. et al. Sildenafil (Viagra) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current. Circulation 102, 275–277 (2000).

    Article  CAS  Google Scholar 

  241. Andersen, M. J. et al. Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction: the Sildenafil and Diastolic Dysfunction After Acute Myocardial Infarction (SIDAMI) trial. Circulation 127, 1200–1208 (2013).

    Article  CAS  Google Scholar 

  242. De Vecchis, R., Cesaro, A. & Ariano, C. Differential effects of the phosphodiesterase inhibition in chronic heart failure depending on the echocardiographic phenotype (HFREF or HFpEF): a meta-analysis. Minerva Cardioangiol. 66, 659–670 (2018).

    Article  Google Scholar 

  243. Soderling, S. H., Bayuga, S. J. & Beavo, J. A. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc. Natl Acad. Sci. USA 95, 8991–8996 (1998).

    Article  CAS  Google Scholar 

  244. Wang, H. et al. Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity. Biochemistry 47, 12760–12768 (2008).

    Article  CAS  Google Scholar 

  245. Brown, K. M., Lee, L. C., Findlay, J. E., Day, J. P. & Baillie, G. S. Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation. FEBS Lett. 586, 1631–1637 (2012).

    Article  CAS  Google Scholar 

  246. Patrucco, E., Albergine, M. S., Santana, L. F. & Beavo, J. A. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J. Mol. Cell Cardiol. 49, 330–333 (2010).

    Article  CAS  Google Scholar 

  247. Garnier, A. et al. Mapping genetic changes in the cAMP-signaling cascade in human atria. J. Mol. Cell Cardiol. 155, 10–20 (2021).

    Article  CAS  Google Scholar 

  248. Wang, P., Wu, P., Egan, R. W. & Billah, M. M. Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution. Gene 280, 183–194 (2001).

    Article  CAS  Google Scholar 

  249. Fisher, D. A., Smith, J. F., Pillar, J. S., St Denis, S. H. & Cheng, J. B. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J. Biol. Chem. 273, 15559–15564 (1998).

    Article  CAS  Google Scholar 

  250. Rentero, C., Monfort, A. & Puigdomenech, P. Identification and distribution of different mRNA variants produced by differential splicing in the human phosphodiesterase 9A gene. Biochem. Biophys. Res. Commun. 301, 686–692 (2003).

    Article  CAS  Google Scholar 

  251. Wang, P., Wu, P., Egan, R. W. & Billah, M. M. Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Differential tissue distribution and subcellular localization of PDE9A variants. Gene 314, 15–27 (2003).

    Article  CAS  Google Scholar 

  252. Onody, A. et al. Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study. FEBS Lett. 536, 35–40 (2003).

    Article  CAS  Google Scholar 

  253. Kokkonen-Simon, K. M. et al. Marked disparity of microRNA modulation by cGMP-selective PDE5 versus PDE9 inhibitors in heart disease. JCI Insight 3, e121739 (2018).

    Article  Google Scholar 

  254. Scott, N. J. A., Rademaker, M. T., Charles, C. J., Espiner, E. A. & Richards, A. M. Hemodynamic, hormonal, and renal actions of phosphodiesterase-9 inhibition in experimental heart failure. J. Am. Coll. Cardiol. 74, 889–901 (2019).

    Article  CAS  Google Scholar 

  255. Methawasin, M. et al. Phosphodiesterase 9a inhibition in mouse models of diastolic dysfunction. Circ. Heart Fail. 13, e006609 (2020).

    Article  CAS  Google Scholar 

  256. Richards, D. A. et al. CRD-733, a novel PDE9 (phosphodiesterase 9) inhibitor, reverses pressure overload-induced heart failure. Circ. Heart Fail. 14, e007300 (2021).

    Article  CAS  Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02038868?id=NCT02038868&draw=2&rank=1 (2022).

  258. Kotera, J., Fujishige, K., Yuasa, K. & Omori, K. Characterization and phosphorylation of PDE10A2, a novel alternative splice variant of human phosphodiesterase that hydrolyzes cAMP and cGMP. Biochem. Biophys. Res. Commun. 261, 551–557 (1999).

    Article  CAS  Google Scholar 

  259. Fujishige, K., Kotera, J. & Omori, K. Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur. J. Biochem. 266, 1118–1127 (1999).

    Article  CAS  Google Scholar 

  260. Fujishige, K. et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J. Biol. Chem. 274, 18438–18445 (1999).

    Article  CAS  Google Scholar 

  261. Jager, R. et al. Activation of PDE10 and PDE11 phosphodiesterases. J. Biol. Chem. 287, 1210–1219 (2012).

    Article  Google Scholar 

  262. Chen, S. et al. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. Circulation 141, 217–233 (2020).

    Article  CAS  Google Scholar 

  263. Zhao, C. Y., Greenstein, J. L. & Winslow, R. L. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J. Mol. Cell Cardiol. 91, 215–227 (2016).

    Article  CAS  Google Scholar 

  264. Rivet-Bastide, M. et al. cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. J. Clin. Invest. 99, 2710–2718 (1997).

    Article  CAS  Google Scholar 

  265. Kirstein, M. et al. Nitric oxide regulates the calcium current in isolated human atrial myocytes. J. Clin. Invest. 95, 794–802 (1995).

    Article  CAS  Google Scholar 

  266. Méry, P.-F., Pavoine, C., Belhassen, L., Pecker, F. & Fischmeister, R. Nitric oxide regulates cardiac Ca2+ current -Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J. Biol. Chem. 268, 26286–26295 (1993).

    Article  Google Scholar 

  267. Mongillo, M. et al. Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ. Res. 98, 226–234 (2006).

    Article  CAS  Google Scholar 

  268. Schobesberger, S. et al. b3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes. Elife 9, e52221 (2020).

    Article  CAS  Google Scholar 

  269. Takimoto, E. et al. Compartmentalization of cardiac β-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115, 2159–2167 (2007).

    Article  CAS  Google Scholar 

  270. Stangherlin, A. et al. cGMP Signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ. Res. 108, 929–939 (2011).

    Article  CAS  Google Scholar 

  271. Meier, S. et al. PDE3 inhibition by C-type natriuretic peptide-induced cGMP enhances cAMP-mediated signaling in both non-failing and failing hearts. Eur. J. Pharmacol. 812, 174–183 (2017).

    Article  CAS  Google Scholar 

  272. Perera, R. K. et al. Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy. Circ. Res. 116, 1304–1311 (2015).

    Article  CAS  Google Scholar 

  273. Zhao, C. Y., Greenstein, J. L. & Winslow, R. L. Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway. J. Mol. Cell Cardiol. 88, 29–38 (2015).

    Article  CAS  Google Scholar 

  274. Blair, C. M. & Baillie, G. S. Reshaping cAMP nanodomains through targeted disruption of compartmentalised phosphodiesterase signalosomes. Biochem. Soc. Trans. 47, 1405–1414 (2019).

    Article  CAS  Google Scholar 

  275. Rybalkin, S. D., Hinds, T. R. & Beavo, J. A. Enzyme assays for cGMP hydrolyzing phosphodiesterases. Methods Mol. Biol. 1020, 51–62 (2013).

    Article  CAS  Google Scholar 

  276. Shakur, Y. et al. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog. Nucleic Acid. Res. Mol. Biol. 66, 241–277 (2001).

    Article  CAS  Google Scholar 

  277. Grant, P. G. & Colman, R. W. Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase. Biochemistry 23, 1801–1807 (1984).

    Article  CAS  Google Scholar 

  278. Wang, P. et al. Expression, purification, and characterization of human cAMP-specific phosphodiesterase (PDE4) subtypes A, B, C, and D. Biochem. Biophys. Res. Commun. 234, 320–324 (1997).

    Article  CAS  Google Scholar 

  279. Beavo, J. A., Francis, S. H. & Houslay, M. D. Cyclic Nucleotide Phosphodiesterases in Health and Disease 1–713 (CRC Press, 2007).

  280. Johnson, W. B., Katugampola, S., Able, S., Napier, C. & Harding, S. E. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig. Life Sci. 90, 328–336 (2012).

    Article  CAS  Google Scholar 

  281. Richter, W. et al. Conserved expression and functions of PDE4 in rodent and human heart. Basic Res. Cardiol. 106, 249–262 (2011).

    Article  CAS  Google Scholar 

  282. Lin, C. S., Lau, A., Tu, R. & Lue, T. F. Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. Biochem. Biophys. Res. Commun. 268, 628–635 (2000).

    Article  CAS  Google Scholar 

  283. Kotera, J. et al. Genomic origin and transcriptional regulation of two variants of cGMP-binding cGMP-specific phosphodiesterases. Eur. J. Biochem. 262, 866–873 (1999).

    Article  CAS  Google Scholar 

  284. Jaski, B. E., Fifer, M. A., Wright, R. F., Braunwald, E. & Colucci, W. S. Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose-response relationships and comparison to nitroprusside. J. Clin. Invest. 75, 643–649 (1985).

    Article  CAS  Google Scholar 

  285. Cuffe, M. S. et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 287, 1541–1547 (2002).

    Article  CAS  Google Scholar 

  286. Kaye, D. M., Nanayakkara, S., Vizi, D., Byrne, M. & Mariani, J. A. Effects of milrinone on rest and exercise hemodynamics in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 67, 2554–2556 (2016).

    Article  Google Scholar 

  287. Nanayakkara, S., Mak, V., Crannitch, K., Byrne, M. & Kaye, D. M. Extended release oral milrinone, CRD-102, for advanced heart failure. Am. J. Cardiol. 122, 1017–1020 (2018).

    Article  CAS  Google Scholar 

  288. Nanayakkara, S. et al. Extended-release oral milrinone for the treatment of heart failure with preserved ejection fraction. J. Am. Heart Assoc. 9, e015026 (2020).

    Article  CAS  Google Scholar 

  289. Metra, M. et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur. Heart J. 30, 3015–3026 (2009).

    Article  CAS  Google Scholar 

  290. Giannetta, E. et al. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125, 2323–2333 (2012).

    Article  CAS  Google Scholar 

  291. Guazzi, M., Tumminello, G., Di Marco, F., Fiorentini, C. & Guazzi, M. D. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J. Am. Coll. Cardiol. 44, 2339–2348 (2004).

    Article  CAS  Google Scholar 

  292. Guazzi, M., Samaja, M., Arena, R., Vicenzi, M. & Guazzi, M. D. Long-term use of sildenafil in the therapeutic management of heart failure. J. Am. Coll. Cardiol. 50, 2136–2144 (2007).

    Article  CAS  Google Scholar 

  293. Hryniewicz, K. et al. Inhibition of angiotensin-converting enzyme and phosphodiesterase type 5 improves endothelial function in heart failure. Clin. Sci. 108, 331–338 (2005).

    Article  CAS  Google Scholar 

  294. Lewis, G. D. et al. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 115, 59–66 (2007).

    Article  CAS  Google Scholar 

  295. Lewis, G. D. et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116, 1555–1562 (2007).

    Article  CAS  Google Scholar 

  296. Behling, A. et al. Effects of 5′-phosphodiesterase four-week long inhibition with sildenafil in patients with chronic heart failure: a double-blind, placebo-controlled clinical trial. J. Card. Fail. 14, 189–197 (2008).

    Article  CAS  Google Scholar 

  297. Guazzi, M., Vicenzi, M., Arena, R. & Guazzi, M. D. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ. Heart Fail. 4, 8–17 (2011).

    Article  CAS  Google Scholar 

  298. Fernandes, A. M. et al. The immediate effect of sildenafil on right ventricular function in patients with heart failure measured by cardiac magnetic resonance: a randomized control trial. PLoS One 10, e0119623 (2015).

    Article  Google Scholar 

  299. Guazzi, M., Vicenzi, M., Arena, R. & Guazzi, M. D. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124, 164–174 (2011).

    Article  CAS  Google Scholar 

  300. Hoendermis, E. S. et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur. Heart J. 36, 2565–2573 (2015).

    Article  CAS  Google Scholar 

  301. Al-Hesayen, A., Floras, J. S. & Parker, J. D. The effects of intravenous sildenafil on hemodynamics and cardiac sympathetic activity in chronic human heart failure. Eur. J. Heart Fail. 8, 864–868 (2006).

    Article  CAS  Google Scholar 

  302. Liu, L. C. et al. Effects of sildenafil on cardiac structure and function, cardiopulmonary exercise testing and health-related quality of life measures in heart failure patients with preserved ejection fraction and pulmonary hypertension. Eur. J. Heart Fail. 19, 116–125 (2017).

    Article  CAS  Google Scholar 

  303. Kim, K. H. et al. PDE 5 inhibition with udenafil improves left ventricular systolic/diastolic functions and exercise capacity in patients with chronic heart failure with reduced ejection fraction; A 12-week, randomized, double-blind, placebo-controlled trial. Am. Heart J. 169, 813–822 (2015).

    Article  CAS  Google Scholar 

  304. Santos, R. C. et al. Tadalafil-induced improvement in left ventricular diastolic function in resistant hypertension. Eur. J. Clin. Pharmacol. 70, 147–154 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UMR-S1180 is a member of the Laboratory of Excellence LERMIT supported by the French National Research Agency (ANR-10-LABX-33) under the programme “Investissements d’Avenir” ANR-11-IDEX-0003-01. The authors are also funded by grants from the Leducq Foundation for Cardiovascular Research (19CVD02), ERA-CVD “PDE4HEART” and ANR-16-ECVD-0007-01 to R.F. and ANR-19-CE14-0038-02 to G.V. R.K. was supported by postdoctoral fellowships from ERA-CVD and Fondation Lefoulon-Delalande.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Rodolphe Fischmeister.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Joseph Beavo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, R., Leroy, J., Vandecasteele, G. et al. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 20, 90–108 (2023). https://doi.org/10.1038/s41569-022-00756-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00756-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing