Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

G protein-coupled receptor kinases as therapeutic targets in the heart

Abstract

G protein-coupled receptors (GPCRs) are critical cellular sensors that mediate numerous physiological processes. In the heart, multiple GPCRs are expressed on various cell types, where they coordinate to regulate cardiac function by modulating critical processes such as contractility and blood flow. Under pathological settings, these receptors undergo aberrant changes in expression levels, localization and capacity to couple to downstream signalling pathways. Conventional therapies for heart failure work by targeting GPCRs, such as β-adrenergic receptor and angiotensin II receptor antagonists. Although these treatments have improved patient survival, heart failure remains one of the leading causes of mortality worldwide. GPCR kinases (GRKs) are responsible for GPCR phosphorylation and, therefore, desensitization and downregulation of GPCRs. In this Review, we discuss the GPCR signalling pathways and the GRKs involved in the pathophysiology of heart disease. Given that increased expression and activity of GRK2 and GRK5 contribute to the loss of contractile reserve in the stressed and failing heart, inhibition of overactive GRKs has been proposed as a novel therapeutic approach to treat heart failure.

Key points

  • G protein-coupled receptors (GPCRs) mediate a range of physiological responses in various cardiovascular cell types.

  • β-Adrenergic receptors (β-ARs) regulate cardiomyocyte contractility in response to sympathetic nervous system stimulation.

  • In the failing heart, increased levels of GPCR kinases (GRKs) phosphorylate, and thereby desensitize and downregulate, β-ARs, resulting in a loss of cardiomyocyte contractile reserve.

  • GRK2 and GRK5 can be therapeutically targeted to protect the heart against injury and failure using novel small-molecule inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signalling pathways associated with G protein activation.
Fig. 2: The pathological functions of GRKs.
Fig. 3: GRK2-targeted therapies for heart failure.

Similar content being viewed by others

References

  1. Benjamin, E. J. et al. Heart disease and stroke statistics — 2018 update: a report from the American Heart Association. Circulation 137, e67–e492 (2018).

    PubMed  Google Scholar 

  2. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sequeira, V. & van der Velden, J. Historical perspective on heart function: the Frank–Starling Law. Biophys. Rev. 7, 421–447 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Perlman, R. L. & Chalfie, M. Catecholamine release from the adrenal medulla. Clin. Endocrinol. Metab. 6, 551–576 (1977).

    CAS  PubMed  Google Scholar 

  5. Madamanchi, A. β-Adrenergic receptor signaling in cardiac function and heart failure. McGill J. Med. 10, 99–104 (2007).

    PubMed  PubMed Central  Google Scholar 

  6. Hakak, Y., Shrestha, D., Goegel, M. C., Behan, D. P. & Chalmers, D. T. Global analysis of G-protein-coupled receptor signaling in human tissues. FEBS Lett. 550, 11–17 (2003).

    CAS  PubMed  Google Scholar 

  7. Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    CAS  PubMed  Google Scholar 

  8. Schertler, G. F. X., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993).

    CAS  PubMed  Google Scholar 

  9. Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell. Biol. 9, 60–71 (2008).

    CAS  PubMed  Google Scholar 

  10. Kristiansen, K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther. 103, 21–80 (2004).

    CAS  PubMed  Google Scholar 

  11. Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    CAS  PubMed  Google Scholar 

  12. Rall, T. W., Sutherland, E. W., Maxwell, A. M. & Davis, J. W. II. The enzymatically catalyzed formation of adenosine 3ʹ,5ʹ-phosphate and inorganic pyrophosphate from adenosine triphosphate. J. Biol. Chem. 237, 1228–1232 (1962).

    CAS  PubMed  Google Scholar 

  13. Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, J., Brown, S. H. J., von Daake, S. & Taylor, S. S. PKA type IIα holoenzyme reveals a combinatorial strategy for isoform diversity. Science 318, 274–279 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, J. & Iyengar, R. Inhibition of cloned adenylyl cyclases by mutant-activated Gi-α and specific suppression of type 2 adenylyl cyclase inhibition by phorbolester treatment. J. Biol. Chem. 268, 12253–12256 (1993).

    CAS  PubMed  Google Scholar 

  16. Taussig, R., Iñiguez-Lluhi, J. A. & Gilman, A. G. Inhibition of adenylyl cyclase by Gi alpha. Science 261, 218–221 (1993).

    CAS  PubMed  Google Scholar 

  17. Lee, C. H., Park, D., Wu, D., Rhee, S. G. & Simon, M. I. Members of the Gq α subunit gene family activate phospholipase C β isozymes. J. Biol. Chem. 267, 16044–16047 (1992).

    CAS  PubMed  Google Scholar 

  18. Harden, T. K., Waldo, G. L., Hicks, S. N. & Sondek, J. Mechanism of activation and inactivation of Gq/phospholipase C-β signaling nodes. Chem. Rev. 111, 6120–6129 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321 (1984).

    CAS  PubMed  Google Scholar 

  20. Kaibuchi, K., Takai, Y. & Nishizuka, Y. Cooperative roles of various membrane phospholipids in the activation of calcium-activated, phospholipid-dependent protein kinase. J. Biol. Chem. 256, 7146–7149 (1981).

    CAS  PubMed  Google Scholar 

  21. Kozasa, T. et al. p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 280, 2109–2111 (1998).

    CAS  PubMed  Google Scholar 

  22. Capote, L. A., Mendez Perez, R. & Lymperopoulos, A. GPCR signaling and cardiac function. Eur. J. Pharmacol. 763, 143–148 (2015).

    CAS  PubMed  Google Scholar 

  23. Salazar, N. C., Chen, J. & Rockman, H. A. Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim. Biophys. Acta 1768, 1006–1018 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Berwick, Z. C. et al. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation 17, 600–607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gustafsson, F. & Holstein-Rathlou, N. H. Angiotensin II modulates conducted vasoconstriction to norepinephrine and local electrical stimulation in rat mesenteric arterioles. Cardiovasc. Res. 44, 176–184 (1999).

    CAS  PubMed  Google Scholar 

  26. Yoshida, M., Suzuki, A. & Itoh, T. Mechanisms of vasoconstriction induced by endothelin-1 in smooth muscle of rabbit mesenteric artery. J. Physiol. 477, 253–265 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gericke, A. et al. Role of the M3 muscarinic acetylcholine receptor subtype in murine ophthalmic arteries after endothelial removal. Invest. Ophthalmol. Vis. Sci. 55, 625–631 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McMurdo, L., Thiemermann, C. & Vane, J. R. The endothelin ETB receptor agonist, IRL 1620, causes vasodilatation and inhibits ex vivo platelet aggregation in the anaesthetised rabbit. Eur. J. Pharmacol. 259, 51–55 (1994).

    CAS  PubMed  Google Scholar 

  29. Bristow, M. R., Hershberger, R. E., Port, J. D., Minobe, W. & Rasmussen, R. Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol. Pharmacol. 35, 295–303 (1989).

    CAS  PubMed  Google Scholar 

  30. Fischmeister, R. & Hartzell, H. C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. 376, 183–202 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Méry, P. F. et al. Muscarinic regulation of the L-type calcium current in isolated cardiac myocytes. Life Sci. 60, 1113–1120 (1997).

    PubMed  Google Scholar 

  32. Xiao, R. P. et al. Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ. Res. 84, 43–52 (1999).

    CAS  PubMed  Google Scholar 

  33. Dorn, G. W., Tepe, N. M., Lorenz, J. N., Koch, W. J. & Liggett, S. B. Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice. Proc. Natl Acad. Sci. USA 96, 6400–6405 (1999).

    CAS  PubMed  Google Scholar 

  34. Morisco, C., Zebrowski, D. C., Vatner, D. E., Vatner, S. F. & Sadoshima, J. β-adrenergic cardiac hypertrophy is mediated primarily by the β1-subtype in the rat heart. J. Mol. Cell. Cardiol. 33, 561–573 (2001).

    CAS  PubMed  Google Scholar 

  35. Yamazaki, T., Kurihara, H., Kurihara, Y., Komuro, I. & Yazaki, Y. Endothelin-1 regulates normal cardiovascular development and cardiac cellular hypertrophy. J. Card. Fail. 2, S7–S12 (1996).

    CAS  PubMed  Google Scholar 

  36. Piascik, M. T. et al. Immunocytochemical localization of the alpha-1B adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides. J. Pharmacol. Exp. Ther. 283, 854–868 (1997).

    CAS  PubMed  Google Scholar 

  37. Myagmar, B. E. et al. Adrenergic receptors in individual ventricular myocytes: the beta-1 and alpha-1B are in all cells, the alpha-1A is in a subpopulation, and the beta-2 and beta-3 are mostly absent. Circ. Res. 120, 1103–1115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorenz, W. et al. Expression of three alpha 2-adrenergic receptor subtypes in rat tissues: implications for alpha 2 receptor classification. Mol. Pharmacol. 38, 599–603 (1990).

    CAS  PubMed  Google Scholar 

  39. Krief, S. et al. Tissue distribution of beta 3-adrenergic receptor mRNA in man. J. Clin. Invest. 91, 344–349 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Molinoff, P. B. Alpha- and beta-adrenergic receptor subtypes properties, distribution and regulation. Drugs 28 (Suppl. 2), 1–15 (1984).

    CAS  PubMed  Google Scholar 

  41. Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    CAS  PubMed  Google Scholar 

  42. Gauthier, C. et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J. Clin. Invest. 102, 1377–1384 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dessy, C. & Balligand, J.-L. Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv. Pharmacol. 59, 135–163 (2010).

    CAS  PubMed  Google Scholar 

  44. Kamp, T. J. & Hell, J. W. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ. Res. 87, 1095–1102 (2000).

    CAS  PubMed  Google Scholar 

  45. Lai, Y., Seagar, M. J., Takahashi, M. & Catterall, W. A. Cyclic AMP-dependent phosphorylation of two size forms of alpha 1 subunits of L-type calcium channels in rat skeletal muscle cells. J. Biol. Chem. 265, 20839–20848 (1990).

    CAS  PubMed  Google Scholar 

  46. Zhang, R., Zhao, J., Mandveno, A. & Potter, J. D. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ. Res. 76, 1028–1035 (1995).

    CAS  PubMed  Google Scholar 

  47. Mesirca, P., Torrente, A. G. & Mangoni, M. E. Functional role of voltage gated Ca(2+) channels in heart automaticity. Front. Physiol. 6, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Nikolaev, V. O. et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327, 1653–1657 (2010).

    CAS  PubMed  Google Scholar 

  49. Brodde, O. E. et al. Myocardial beta-adrenoceptor changes in heart failure: concomitant reduction in beta 1- and beta 2-adrenoceptor function related to the degree of heart failure in patients with mitral valve disease. J. Am. Coll. Cardiol. 14, 323–331 (1989).

    CAS  PubMed  Google Scholar 

  50. Neumann, J. et al. Increase in myocardial Gi-proteins in heart failure. Lancet 2, 936–937 (1988).

    CAS  PubMed  Google Scholar 

  51. Chen, C. K. et al. Characterization of human GRK7 as a potential cone opsin kinase. Mol. Vis. 7, 305–313 (2001).

    CAS  PubMed  Google Scholar 

  52. Premont, R. T. et al. Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. J. Biol. Chem. 271, 6403–6410 (1996).

    CAS  PubMed  Google Scholar 

  53. Somers, R. L. & Klein, D. C. Rhodopsin kinase activity in the mammalian pineal gland and other tissues. Science 226, 182–184 (1984).

    CAS  PubMed  Google Scholar 

  54. Dzimiri, N., Muiya, P., Andres, E. & Al-Halees, Z. Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur. J. Pharmacol. 489, 167–177 (2004).

    CAS  PubMed  Google Scholar 

  55. Montó, F. et al. Different expression of adrenoceptors and GRKs in the human myocardium depends on heart failure etiology and correlates to clinical variables. Am. J. Physiol. Heart Circ. Physiol. 303, H368–H376 (2012).

    PubMed  Google Scholar 

  56. Sato, P. Y., Chuprun, J. K., Schwartz, M. & Koch, W. J. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol. Rev. 95, 377–404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bownds, D., Dawes, J., Miller, J. & Stahlman, M. Phosphorylation of frog photoreceptor membranes induced by light. Nature New Biol. 237, 125–127 (1972).

    CAS  PubMed  Google Scholar 

  58. Hisatomi, O. et al. A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost cone photoreceptors. FEBS Lett. 424, 159–164 (1998).

    CAS  PubMed  Google Scholar 

  59. Inglese, J., Koch, W. J., Caron, M. G. & Lefkowitz, R. J. Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature 359, 147–150 (1992).

    CAS  PubMed  Google Scholar 

  60. Carman, C. V. et al. Mutational analysis of Gbetagamma and phospholipid interaction with G protein-coupled receptor kinase 2. J. Biol. Chem. 275, 10443–10452 (2000).

    CAS  PubMed  Google Scholar 

  61. Jiang, X., Benovic, J. L. & Wedegaertner, P. B. Plasma membrane and nuclear localization of G protein–coupled receptor kinase 6A. Mol. Biol. Cell 18, 2960–2969 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pronin, A. N., Carman, C. V. & Benovic, J. L. Structure-function analysis of G protein-coupled receptor kinase-5. Role of the carboxyl terminus in kinase regulation. J. Biol. Chem. 273, 31510–31518 (1998).

    CAS  PubMed  Google Scholar 

  63. Kühn, H., Hall, S. W. & Wilden, U. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett. 176, 473–478 (1984).

    PubMed  Google Scholar 

  64. Krupnick, J. G., Gurevich, V. V. & Benovic, J. L. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J. Biol. Chem. 272, 18125–18131 (1997).

    CAS  PubMed  Google Scholar 

  65. Goodman, O. B., Krupnick, J. G., Gurevich, V. V., Benovic, J. L. & Keen, J. H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J. Biol. Chem. 272, 15017–15022 (1997).

    CAS  PubMed  Google Scholar 

  66. Baugher, P. J. & Richmond, A. The carboxyl-terminal PDZ ligand motif of chemokine receptor CXCR2 modulates post-endocytic sorting and cellular chemotaxis. J. Biol. Chem. 283, 30868–30878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nobles, K. N. et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hollinger, S. & Hepler, J. R. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol. Rev. 54, 527–559 (2002).

    CAS  PubMed  Google Scholar 

  69. Koch, W. J. et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 268, 1350–1353 (1995).

    CAS  PubMed  Google Scholar 

  70. Rockman, H. A. et al. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc. Natl Acad. Sci. USA 93, 9954–9959 (1996).

    CAS  PubMed  Google Scholar 

  71. Rockman, H. A. et al. Control of myocardial contractile function by the level of β-adrenergic receptor kinase 1 in gene-targeted mice. J. Biol. Chem. 273, 18180–18184 (1998).

    CAS  PubMed  Google Scholar 

  72. Chuang, T. T., LeVine, H. & Blasi, A. D. Phosphorylation and activation of β-adrenergic receptor kinase by protein kinase C. J. Biol. Chem. 270, 18660–18665 (1995).

    CAS  PubMed  Google Scholar 

  73. Cong, M. et al. Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J. Biol. Chem. 276, 15192–15199 (2001).

    CAS  PubMed  Google Scholar 

  74. Krasel, C. et al. Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J. Biol. Chem. 276, 1911–1915 (2001).

    CAS  PubMed  Google Scholar 

  75. Penela, P., Elorza, A., Sarnago, S. & Mayor, F. β-Arrestin- and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J. 20, 5129–5138 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pitcher, J. A. et al. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem. 274, 34531–34534 (1999).

    CAS  PubMed  Google Scholar 

  77. Whalen, E. J. et al. Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 129, 511–522 (2007).

    CAS  PubMed  Google Scholar 

  78. Pronin, A. N. & Benovic, J. L. Regulation of the G protein-coupled receptor kinase GRK5 by protein kinase C. J. Biol. Chem. 272, 3806–3812 (1997).

    CAS  PubMed  Google Scholar 

  79. Carman, C. V., Lisanti, M. P. & Benovic, J. L. Regulation of G protein-coupled receptor kinases by caveolin. J. Biol. Chem. 274, 8858–8864 (1999).

    CAS  PubMed  Google Scholar 

  80. Pronin, A. N., Satpaev, D. K., Slepak, V. Z. & Benovic, J. L. Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. J. Biol. Chem. 272, 18273–18280 (1997).

    CAS  PubMed  Google Scholar 

  81. Vinge, L. E. et al. Myocardial distribution and regulation of GRK and beta-arrestin isoforms in congestive heart failure in rats. Am. J. Physiol. Heart Circ. Physiol. 281, H2490–H2499 (2001).

    CAS  PubMed  Google Scholar 

  82. Huang, Z. M. et al. Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci. Signal. 6, ra95 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Luo, J. & Benovic, J. L. G. Protein-coupled receptor kinase interaction with Hsp90 mediates kinase maturation. J. Biol. Chem. 278, 50908–50914 (2003).

    CAS  PubMed  Google Scholar 

  84. Chen, M. et al. Prodeath signaling of G protein-coupled receptor kinase 2 in cardiac myocytes after ischemic stress occurs via extracellular signal-regulated kinase-dependent heat shock protein 90-mediated mitochondrial targeting. Circ. Res. 112, 1121–1134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sato, P. Y. et al. GRK2 compromises cardiomyocyte mitochondrial function by diminishing fatty acid-mediated oxygen consumption and increasing superoxide levels. J. Mol. Cell. Cardiol. 89, 360–364 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gold, J. I. et al. Nuclear translocation of cardiac G protein-Coupled Receptor kinase 5 downstream of select Gq-activating hypertrophic ligands is a calmodulin-dependent process. PLOS ONE 8, e57324 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hullmann, J. E. et al. GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ. Res. 115, 976–985 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pitcher, J. A. et al. The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J. Biol. Chem. 273, 12316–12324 (1998).

    CAS  PubMed  Google Scholar 

  89. Peregrin, S. et al. Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr. Biol. CB 16, 2042–2047 (2006).

    CAS  PubMed  Google Scholar 

  90. Rose, B. A., Force, T. & Wang, Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol. Rev. 90, 1507–1546 (2010).

    CAS  PubMed  Google Scholar 

  91. Weinbrenner, C., Liu, G. S., Cohen, M. V. & Downey, J. M. Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J. Mol. Cell. Cardiol. 29, 2383–2391 (1997).

    CAS  PubMed  Google Scholar 

  92. Ciccarelli, M. et al. GRK2 activity impairs cardiac glucose uptake and promotes insulin resistance following myocardial ischemia. Circulation 123, 1953–1962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. DiNicolantonio, J. J. et al. β-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature. Open Heart 2, e000230 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Bristow, M. R. β-adrenergic receptor blockade in chronic heart failure. Circulation 101, 558–569 (2000).

    CAS  PubMed  Google Scholar 

  95. Flesch, M. et al. Differential effects of carvedilol and metoprolol on isoprenaline-induced changes in beta-adrenoceptor density and systolic function in rat cardiac myocytes. Cardiovasc. Res. 49, 371–380 (2001).

    CAS  PubMed  Google Scholar 

  96. Leineweber, K. et al. G-protein-coupled receptor kinase activity in human heart failure: effects of beta-adrenoceptor blockade. Cardiovasc. Res. 66, 512–519 (2005).

    CAS  PubMed  Google Scholar 

  97. Doi, M. et al. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 105, 1374–1379 (2002).

    CAS  PubMed  Google Scholar 

  98. Reiken, S. et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 107, 2459–2466 (2003).

    CAS  PubMed  Google Scholar 

  99. Bartholomeu, J. B. et al. Intracellular mechanisms of specific β-adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure. J. Mol. Cell. Cardiol. 45, 240–249 (2008).

    CAS  PubMed  Google Scholar 

  100. Babick, A., Elimban, V., Zieroth, S. & Dhalla, N. S. Reversal of cardiac dysfunction and subcellular alterations by metoprolol in heart failure due to myocardial infarction. J. Cell. Physiol. 228, 2063–2070 (2013).

    CAS  PubMed  Google Scholar 

  101. Koch, W. J., Inglese, J., Stone, W. C. & Lefkowitz, R. J. The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J. Biol. Chem. 268, 8256–8260 (1993).

    CAS  PubMed  Google Scholar 

  102. Ostrom, R. S. et al. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J. Biol. Chem. 276, 42063–42069 (2001).

    CAS  PubMed  Google Scholar 

  103. Akhter, S. A. et al. In vivo inhibition of elevated myocardial β-adrenergic receptor kinase activity in hybrid transgenic mice restores normal β-adrenergic signaling and function. Circulation 100, 648–653 (1999).

    CAS  PubMed  Google Scholar 

  104. Korzick, D. H. et al. Transgenic manipulation of β-adrenergic receptor kinase modifies cardiac myocyte contraction to norepinephrine. Am. J. Physiol. Heart Circ. Physiol. 272, H590–H596 (1997).

    CAS  Google Scholar 

  105. Eckhart, A. D. & Koch, W. J. Expression of a β-adrenergic receptor kinase inhibitor reverses dysfunction in failing cardiomyocytes. Mol. Ther. 5, 74–79 (2002).

    CAS  PubMed  Google Scholar 

  106. Rockman, H. A. et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA 95, 7000–7005 (1998).

    CAS  PubMed  Google Scholar 

  107. Suzuki, Y., Nakano, K., Sugiyama, M. & Imagawa, J. βARK1 inhibition improves survival in a mouse model of heart failure induced by myocardial infarction. J. Cardiovasc. Pharmacol. 44, 329–334 (2004).

    CAS  PubMed  Google Scholar 

  108. Tachibana, H., Naga Prasad, S. V., Lefkowitz, R. J., Koch, W. J. & Rockman, H. A. Level of β-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation 111, 591–597 (2005).

    CAS  PubMed  Google Scholar 

  109. Harding, V. B., Jones, L. R., Lefkowitz, R. J., Koch, W. J. & Rockman, H. A. Cardiac βARK1 inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure. Proc. Natl Acad. Sci. USA 98, 5809–5814 (2001).

    CAS  PubMed  Google Scholar 

  110. Brinks, H. et al. Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ. Res. 107, 1140–1149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Choi, D.-J., Koch, W. J., Hunter, J. J. & Rockman, H. A. Mechanism of β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-adrenergic receptor kinase. J. Biol. Chem. 272, 17223–17229 (1997).

    CAS  PubMed  Google Scholar 

  112. Drazner, M. H. et al. Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes. J. Clin. Invest. 99, 288–296 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tevaearai, H. T., Eckhart, A. D., Shotwell, K. F., Wilson, K. & Koch, W. J. Ventricular dysfunction after cardioplegic arrest is improved after myocardial gene transfer of a beta-adrenergic receptor kinase inhibitor. Circulation 104, 2069–2074 (2001).

    CAS  PubMed  Google Scholar 

  114. Tevaearai, H. T., Walton, G. B., Eckhart, A. D., Keys, J. R. & Koch, W. J. Donor heart contractile dysfunction following prolonged ex vivo preservation can be prevented by gene-mediated beta-adrenergic signaling modulation. Eur. J. Cardiothorac. Surg. 22, 733–737 (2002).

    PubMed  Google Scholar 

  115. Tevaearai, H. T., Walton, G. B., Keys, J. R., Koch, W. J. & Eckhart, A. D. Acute ischemic cardiac dysfunction is attenuated via gene transfer of a peptide inhibitor of the β-adrenergic receptor kinase (βARK1). J. Gene Med. 7, 1172–1177 (2005).

    CAS  PubMed  Google Scholar 

  116. White, D. C. et al. Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl Acad. Sci. USA 97, 5428–5433 (2000).

    CAS  PubMed  Google Scholar 

  117. Raake, P. W. J. et al. AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur. Heart J. 34, 1437–1447 (2013).

    CAS  PubMed  Google Scholar 

  118. Rengo, G. et al. Myocardial adeno-associated virus serotype 6-βARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119, 89–98 (2009).

    CAS  PubMed  Google Scholar 

  119. Emani, S. M., Shah, A. S., White, D. C., Glower, D. D. & Koch, W. J. Right ventricular gene therapy with a beta-adrenergic receptor kinase inhibitor improves survival after pulmonary artery banding. Ann. Thorac. Surg. 72, 1657–1661 (2001).

    CAS  PubMed  Google Scholar 

  120. Shang, D. et al. Adenoviral βARKct cardiac gene transfer ameliorates post-resuscitation myocardial injury in a porcine model of cardiac arrest. Shock https://doi.org/10.1097/SHK.0000000000001320 (2019).

    Article  PubMed  Google Scholar 

  121. Swain, J. D. et al. MCARD-mediated gene transfer of GRK2 inhibitor in ovine model of acute myocardial infarction. J. Cardiovasc. Transl Res. 6, 253–262 (2013).

    PubMed  Google Scholar 

  122. Katz, M. G. et al. AAV6-βARKct gene delivery mediated by molecular cardiac surgery with recirculating delivery (MCARD) in sheep results in robust gene expression and increased adrenergic reserve. J. Thorac. Cardiovasc. Surg. 143, 720–726 (2012).

    CAS  PubMed  Google Scholar 

  123. Gupta, D. et al. Adenoviral beta-adrenergic receptor kinase inhibitor gene transfer improves exercise capacity, cardiac contractility, and systemic inflammation in a model of pressure overload hypertrophy. Cardiovasc. Drugs Ther. 22, 373–381 (2008).

    CAS  PubMed  Google Scholar 

  124. Molina, E. J., Gupta, D., Palma, J., Gaughan, J. P. & Macha, M. Right ventricular beneficial effects of beta adrenergic receptor kinase inhibitor (ßARKct) gene transfer in a rat model of severe pressure overload. Biomed. Pharmacother. 63, 331–336 (2009).

    CAS  PubMed  Google Scholar 

  125. Shah, A. S. et al. In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316 (2001).

    CAS  PubMed  Google Scholar 

  126. Woodard, G. E., Jardín, I., Berna-Erro, A., Salido, G. M. & Rosado, J. A. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. Int. Rev. Cell. Mol. Biol. 317, 97–183 (2015).

    CAS  PubMed  Google Scholar 

  127. Carman, C. V. et al. Selective regulation of Gαq/11 by an RGS domain in the G protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274, 34483–34492 (1999).

    CAS  PubMed  Google Scholar 

  128. Day, P. W. et al. Characterization of the GRK2 binding site of Gαq. J. Biol. Chem. 279, 53643–53652 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J. J. G. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gßγ complex. Science 310, 1686–1690 (2005).

    CAS  PubMed  Google Scholar 

  130. Schumacher, S. M. et al. A peptide of the RGS domain of GRK2 binds and inhibits Gα(q) to suppress pathological cardiac hypertrophy and dysfunction. Sci. Signal. 9, ra30 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Sorriento, D. et al. The G-protein-coupled receptor kinase 5 inhibits NFκB transcriptional activity by inducing nuclear accumulation of IκBα. Proc. Natl Acad. Sci. USA 105, 17818–17823 (2008).

    CAS  PubMed  Google Scholar 

  132. Sorriento, D. et al. Intracardiac injection of AdGRK5-NT reduces left ventricular hypertrophy by inhibiting NF-κB-dependent hypertrophic gene expression. Hypertension 56, 696–704 (2010).

    CAS  PubMed  Google Scholar 

  133. Sorriento, D. et al. The amino-terminal domain of GRK5 inhibits cardiac hypertrophy through the regulation of calcium-calmodulin dependent transcription factors. Int. J. Mol. Sci. 19, E861 (2018).

    PubMed  Google Scholar 

  134. Bonacci, T. M. et al. Differential targeting of Gßγ-subunit signaling with small molecules. Science 312, 443–446 (2006).

    CAS  PubMed  Google Scholar 

  135. Casey, L. M. et al. Small molecule disruption of Gβγ signaling inhibits the progression of heart failure. Circ. Res. 107, 532–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kamal, F. A. et al. Simultaneous adrenal and cardiac G-protein–coupled receptor-Gβγ inhibition halts heart failure progression. J. Am. Coll. Cardiol. 63, 2549–2557 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Travers, J. G. et al. Pharmacological and activated fibroblast targeting of Gβγ-GRK2 after myocardial ischemia attenuates heart failure progression. J. Am. Coll. Cardiol. 70, 958–971 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Thal, D. M. et al. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem. Biol. 7, 1830–1839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Guo, S., Carter, R. L., Grisanti, L. A., Koch, W. J. & Tilley, D. G. Impact of paroxetine on proximal β-adrenergic receptor signaling. Cell. Signal. 38, 127–133 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schumacher, S. M. et al. Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci. Transl Med. 7, 277ra31 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tian, X. et al. Effects of paroxetine-mediated inhibition of GRK2 expression on depression and cardiovascular function in patients with myocardial infarction. Neuropsychiatr. Dis. Treat. 12, 2333–2341 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mayer, G. et al. An RNA molecule that specifically inhibits G-protein-coupled receptor kinase 2 in vitro. RNA 14, 524–534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Waldschmidt, H. V. et al. Structure-based design of highly selective and potent G protein-coupled receptor kinase 2 inhibitors based on paroxetine. J. Med. Chem. 60, 3052–3069 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Waldschmidt, H. V. et al. Structure-based design, synthesis, and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. J. Med. Chem. 59, 3793–3807 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Homan, K. T., Wu, E., Cannavo, A., Koch, W. J. & Tesmer, J. J. G. Identification and characterization of amlexanox as a G protein-coupled receptor kinase 5 inhibitor. Molecules 19, 16937–16949 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Park, C. H. et al. A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2UT cells. Mol. Cell. Biochem. 422, 151–160 (2016).

    CAS  PubMed  Google Scholar 

  147. Cho, S. Y. et al. Design and synthesis of novel 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine derivatives as selective G-protein-coupled receptor kinase-2 and -5 inhibitors. Bioorg. Med. Chem. Lett. 23, 6711–6716 (2013).

    CAS  PubMed  Google Scholar 

  148. Homan, K. T. et al. Crystal structure of G protein-coupled receptor kinase 5 in complex with a rationally designed inhibitor. J. Biol. Chem. 290, 20649–20659 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Homan, K. T. et al. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors. ACS Chem. Biol. 10, 310–319 (2015).

    CAS  PubMed  Google Scholar 

  150. Toma, M. & Starling, R. C. Inotropic therapy for end-stage heart failure patients. Curr. Treat. Opt. Cardiovasc. Med. 12, 409–419 (2010).

    Google Scholar 

  151. Eckhart, A. D. et al. Inhibition of βARK1 restores impaired biochemical β-adrenergic receptor responsiveness but does not rescue CREBA133 induced cardiomyopathy. J. Mol. Cell. Cardiol. 34, 669–677 (2002).

    CAS  PubMed  Google Scholar 

  152. Bauer, R. et al. Various effects of AAV9-mediated βARKct gene therapy on the heart in dystrophin-deficient (mdx) mice and δ-sarcoglycan-deficient (Sgcd-/-) mice. Neuromuscul. Disord. 29, 231–241 (2018).

    PubMed  Google Scholar 

  153. Jafferjee, M. et al. GRK2 up-regulation creates a positive feedback loop for catecholamine production in chromaffin cells. Mol. Endocrinol. 30, 372–381 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lymperopoulos, A., Rengo, G., Zincarelli, C., Soltys, S. & Koch, W. J. Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol. Ther. 16, 302–307 (2008).

    CAS  PubMed  Google Scholar 

  155. Cannavo, A. et al. GRK2 regulates α2-adrenergic receptor-dependent catecholamine release in human adrenal chromaffin cells. J. Am. Coll. Cardiol. 69, 1515–1517 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Rengo, G. et al. Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure. Am. J. Physiol. Heart Circ. Physiol. 298, H2032–H2038 (2010).

    CAS  PubMed  Google Scholar 

  157. Lymperopoulos, A. et al. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J. Biol. Chem. 285, 16378–16386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lymperopoulos, A., Rengo, G., Funakoshi, H., Eckhart, A. D. & Koch, W. J. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat. Med. 13, 315–323 (2007).

    CAS  PubMed  Google Scholar 

  159. Liu, P. P. Cardiorenal syndrome in heart failure: a cardiologist’s perspective. Can. J. Cardiol. 24, 25B–29B (2008).

    PubMed  PubMed Central  Google Scholar 

  160. Polhemus, D. J. et al. Radiofrequency renal denervation protects the ischemic heart via inhibition of GRK2 and increased nitric oxide signaling. Circ. Res. 119, 470–480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kamal, F. A. et al. G protein-coupled receptor-G-protein βγ-subunit signaling mediates renal dysfunction and fibrosis in heart failure. J. Am. Soc. Nephrol. 28, 197–208 (2017).

    CAS  PubMed  Google Scholar 

  162. Liggett, S. B. Pharmacogenomics of β1-adrenergic receptor polymorphisms in heart failure. Heart Fail. Clin. 6, 27–33 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. Dorn, G. W. Adrenergic signaling polymorphisms and their impact on cardiovascular disease. Physiol. Rev. 90, 1013–1062 (2010).

    CAS  PubMed  Google Scholar 

  164. Sofowora, G. G. et al. A common β1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to β-blockade. Clin. Pharmacol. Ther. 73, 366–371 (2003).

    CAS  PubMed  Google Scholar 

  165. Lee, H.-Y. et al. Impact of the β-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in Korean heart failure patients: association between β adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study. Korean J. Intern. Med. 31, 277–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Small, K. M., Brown, K. M., Forbes, S. L. & Liggett, S. B. Polymorphic deletion of three intracellular acidic residues of the α2B-adrenergic receptor decreases G protein-coupled receptor kinase-mediated phosphorylation and desensitization. J. Biol. Chem. 276, 4917–4922 (2001).

    CAS  PubMed  Google Scholar 

  167. Nguyen, K., Kassimatis, T. & Lymperopoulos, A. Impaired desensitization of a human polymorphic α2B-adrenergic receptor variant enhances its sympatho-inhibitory activity in chromaffin cells. Cell Commun. Signal. 9, 5 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, W. C. H., Mihlbachler, K. A., Bleecker, E. R., Weiss, S. T. & Liggett, S. B. A. Polymorphism of GRK5 alters agonist-promoted desensitization of β2-adrenergic receptors. Pharmacogenet. Genom. 18, 729–732 (2008).

    Google Scholar 

  169. Liggett, S. B. et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat. Med. 14, 510–517 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Li, Y. et al. Association between polymorphisms of ADRBK1 gene and plasma renin activity in hypertensive patients: a case-control study. Med. Sci. Monit. 22, 2981–2988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.P. and K.G. researched data and wrote the article. All the authors contributed to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Walter J. Koch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfleger, J., Gresham, K. & Koch, W.J. G protein-coupled receptor kinases as therapeutic targets in the heart. Nat Rev Cardiol 16, 612–622 (2019). https://doi.org/10.1038/s41569-019-0220-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0220-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing