Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Micro-engineering and nano-engineering approaches to investigate tumour ecosystems

Abstract

The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preclinical models of tumour ecosystems.
Fig. 2: Research tools to investigate hallmark processes and bioanalytes in tumour ecosystems.
Fig. 3: Nanosensor technologies to investigate tumour ecosystems.

Similar content being viewed by others

References

  1. Wu, F. et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yan, Y. et al. Understanding heterogeneous tumor microenvironment in metastatic melanoma. PLoS ONE 14, e0216485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, Y. et al. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 7, eabg4755 (2021). Spatially resolved single-cell RNA-sequencing informs how cell type composition and cellular states relate to location within complex pathological tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, F. & Simon, M. C. Cancer cells don’t live alone: metabolic communication within tumor microenvironments. Dev. Cell 54, 183–195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belotti, D., Pinessi, D. & Taraboletti, G. Alternative vascularization mechanisms in tumor resistance to therapy. Cancers 13, 1912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rothschilds, A. M. & Wittrup, K. D. What, why, where, and when: bringing timing to immuno-oncology. Trends Immunol. 40, 12–21 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S. C., Clark, I. C., Shahi, P. & Abate, A. R. J. A. C. Single-cell RT–PCR in microfluidic droplets with integrated chemical lysis. Anal. Chem. 90, 1273–1279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen Michelle, B. et al. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc. Natl Acad. Sci. USA 115, 7022–7027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neufeld, L. et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Sci. Adv. 7, eabi9119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, M. et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat. Biomed. Eng. 6, 267–275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gardner, L., Kostarelos, K., Mallick, P., Dive, C. & Hadjidemetriou, M. Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome. Nat. Rev. Clin. Oncol. 19, 551–561 (2022).

    Article  PubMed  Google Scholar 

  16. Roberts, S. et al. Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Sci. Rep. 9, 8550 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamada, K. M. & Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, L. et al. PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight 5, e135544 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dao, V., Yuki, K., Lo, Y. H., Nakano, M. & Kuo, C. J. Immune organoids: from tumor modeling to precision oncology. Trends Cancer 8, 870–880 (2022).

    Article  PubMed  Google Scholar 

  21. Bose, S., Clevers, H. & Shen, X. Promises and challenges of organoid-guided precision medicine. Med 2, 1011–1026 (2021).

    Article  PubMed  Google Scholar 

  22. Neufeld, L., Yeini, E., Pozzi, S. & Satchi-Fainaro, R. 3D bioprinted cancer models: from basic biology to drug development. Nat. Rev. Cancer 22, 679–692 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Izumchenko, E. et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann. Oncol. 28, 2595–2605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshida, G. Applications of patient-derived tumor xenograft models and tumor organoids. J. Hematol. Oncol. 13, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E. & Dow, L. E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 22, 259–279 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant. Imaging Med. Surg. 5, 708 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Chen, S., Boda, S. K., Batra, S. K., Li, X. & Xie, J. Emerging roles of electrospun nanofibers in cancer research. Adv. Healthc. Mater. 7, 1701024 (2018).

    Article  Google Scholar 

  28. Wang, Y. & Yao, Y. Nanofiber alignment mediates the pattern of single cell migration. Langmuir 36, 2129–2135 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Panagiotakopoulou, M. et al. A nanoprinted model of interstitial cancer migration reveals a link between cell deformability and proliferation. ACS Nano 10, 6437–6448 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Lemma, E. D. et al. Microenvironmental stiffness of 3D polymeric structures to study invasive rates of cancer cells. Adv. Healthc. Mater. 6, 1700888 (2017).

    Article  Google Scholar 

  31. Yang, Y., Kulangara, K., Sia, J., Wang, L. & Leong, K. W. J. Engineering of a microfluidic cell culture platform embedded with nanoscale features. Lab Chip 11, 1638–1646 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Irimia, D., Charras, G., Agrawal, N., Mitchison, T. & Toner, M. Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7, 1783–1790 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci. USA 109, 10334–10339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, B., Yin, T., Wu, Y. I., Inoue, T. & Levchenko, A. Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration. Nat. Commun. 6, 6619 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Wilson, K. et al. Mechanisms of leading edge protrusion in interstitial migration. Nat. Commun. 4, 2896 (2013).

    Article  PubMed  Google Scholar 

  36. Liu, Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Maiuri, P. et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161, 374–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, B. et al. Synthetic spatially graded Rac activation drives cell polarization and movement. Proc. Natl Acad. Sci. USA 109, E3668–E3677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fetah, K. L. et al. Cancer modeling‐on‐a‐chip with future artificial intelligence integration. Small 15, 1901985 (2019).

    Article  CAS  Google Scholar 

  40. Han, B., Qu, C., Park, K., Konieczny, S. F. & Korc, M. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Cancer Lett. 380, 319–329 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Q. et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. Online 19, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng, F. et al. Organ‐on‐a‐chip systems: microengineering to biomimic living systems. Small 12, 2253–2282 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Orcheston-Findlay, L., Hashemi, A., Garrill, A. & Nock, V. A microfluidic gradient generator to simulate the oxygen microenvironment in cancer cell culture. Microelectron. Eng. 195, 107–113 (2018).

    Article  CAS  Google Scholar 

  44. Ma, Y.-H. V., Middleton, K., You, L. & Sun, Y. J. M. A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsyst. Nanoeng. 4, 17104 (2018).

    Article  CAS  Google Scholar 

  45. Chen, M. B. et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12, 865–880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rothbauer, M., Zirath, H. & Ertl, P. Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip 18, 249–270 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Weinberg, F., Ramnath, N. & Nagrath, D. Reactive oxygen species in the tumor microenvironment: an overview. Cancers 11, 1191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Place, T. L., Domann, F. E. & Case, A. J. Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic. Biol. Med. 113, 311–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ando, Y. et al. Evaluating CAR‐T cell therapy in a hypoxic 3D tumor model. Adv. Healthc. Mater. 8, 1900001 (2019).

    Article  Google Scholar 

  50. Aung, A., Kumar, V., Theprungsirikul, J., Davey, S. K. & Varghese, S. An engineered tumor-on-a-chip device with breast cancer–immune cell interactions for assessing T-cell recruitment. Cancer Res. 80, 263–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Pavesi, A. et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2, e89762 (2017). Three-dimensional modelling approach for systematic analysis of the hypoxic microenvironment.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barmaki, S. et al. A microfluidic chip architecture enabling a hypoxic microenvironment and nitric oxide delivery in cell culture. Micromachines 11, 979 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shirure, V. S. et al. Quantitative design strategies for fine control of oxygen in microfluidic systems. Lab Chip 20, 3036–3050 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X., Liu, Z. & Pang, Y. Concentration gradient generation methods based on microfluidic systems. RSC Adv. 7, 29966–29984 (2017).

    Article  CAS  Google Scholar 

  55. Haessler, U., Kalinin, Y., Swartz, M. A. & Wu, M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11, 827–835 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Allen, S. G. et al. Macrophages enhance migration in inflammatory breast cancer cells via RhoC GTPase signaling. Sci. Rep. 6, 39190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, Z. et al. M2 macrophages promote NSCLC metastasis by upregulating CRYAB. Cell Death Dis. 10, 1–11 (2019).

    Article  Google Scholar 

  58. Ren, X., Alamri, A., Hipolito, J., Lin, F. & Kung, S. K. Applications of microfluidic devices in advancing NK-cell migration studies. Methods Enzymol. 631, 357–370 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Sai, J., Rogers, M., Hockemeyer, K., Wikswo, J. P. & Richmond, A. Study of chemotaxis and cell–cell interactions in cancer with microfluidic devices. Methods Enzymol. 570, 19–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Kwapiszewska, K., Michalczuk, A., Rybka, M., Kwapiszewski, R. & Brzózka, Z. A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip 14, 2096–2104 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, S. W. L. et al. Integrated in silico and 3D in vitro model of macrophage migration in response to physical and chemical factors in the tumor microenvironment. Integr. Biol. 12, 90–108 (2020).

    Article  Google Scholar 

  62. Hwang, H. et al. Human breast cancer-derived soluble factors facilitate CCL19-induced chemotaxis of human dendritic cells. Sci. Rep. 6, 30207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Wolf, K. & Friedl, P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol. 21, 736–744 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Bremer, C., Tung, C. H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7, 743–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Fisher, K. E. et al. MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. J. Cell Sci. 122, 4558–4569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007). Modelling and optical imaging to monitor and control cancer cell migration in co-cultures of cancer cells and stromal fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  68. Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park, D. et al. High-throughput microfluidic 3D cytotoxicity assay for cancer immunotherapy (CACI-IMPACT platform). Front. Immunol. 10, 1133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Parlato, S. et al. 3D microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci. Rep. 7, 1093 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 198, 180–193 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nguyen, M. et al. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments. Cell Rep. 25, 3884–3893.e3 (2018). Micro-engineering approach to investigate intercellular interactions in the tumour microenvironment via single-cell tracking.

    Article  CAS  PubMed  Google Scholar 

  75. Yang, X. et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip 18, 486–495 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Collins, T. et al. Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. Biomicrofluidics 15, 044103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yi, H.-G. et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng. 3, 509–519 (2019). Bioprinting tumour models to reflect complexity and heterogeneity in the tumor microenvironment.

    Article  CAS  PubMed  Google Scholar 

  78. Panagiotakopoulou, M. et al. Cell cycle-dependent force transmission in cancer cells. Mol. Biol. Cell 29, 2528–2539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hansel, C. S. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 13, 2913–2926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bergert, M. et al. Confocal reference free traction force microscopy. Nat. Commun. 7, 12814 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zancla, A., Mozetic, P., Orsini, M., Forte, G. & Rainer, A. A primer to traction force microscopy. J. Biol. Chem. 298, 101867 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schaaf, M. B., Garg, A. D. & Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 9, 115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ayuso, J. M. et al. Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Oncoimmunology 8, 1553477 (2019).

    Article  PubMed  Google Scholar 

  84. Wimalachandra, D. C. et al. Microfluidic-based immunomodulation of immune cells using upconversion nanoparticles in simulated blood vessel–tumor system. ACS Appl. Mater. Interfaces 11, 37513–37523 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Sohn, L. L. et al. How can microfluidic and microfabrication approaches make experiments more physiologically relevant? Cell Syst. 11, 209–211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Luque-González, M. A., Reis, R. L., Kundu, S. C. & Caballero, D. Human microcirculation-on-chip models in cancer research: key integration of lymphatic and blood vasculatures. Adv. Biosyst. 4, 2000045 (2020). Micro-engineering approach that incorporates lymphatic and blood vasculatures in a tumor-on-a-chip platform.

    Article  Google Scholar 

  87. Szklanny, A. A. et al. 3D bioprinting of engineered tissue flaps with hierarchical vessel networks (VesselNet) for direct host-to-implant perfusion. Adv. Mater. 33, 2102661 (2021).

    Article  CAS  Google Scholar 

  88. O’Connor, C., Brady, E., Zheng, Y., Moore, E. & Stevens, K. R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 7, 702–716 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bocci, F. et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc. Natl Acad. Sci. USA 116, 148–157 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Williams, R. M. et al. Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Sci. Adv. 4, eaaq1090 (2021).

    Article  Google Scholar 

  91. Perillo, B. et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Koch, C. J. Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Methods Enzymol. 352, 3–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Dranka, B. P. et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free. Radic. Biol. Med. 51, 1621–1635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Welsher, K., Sherlock, S. P. & Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl Acad. Sci. USA 108, 8943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mandal, A. K. et al. Fluorescent sp3 defect-tailored carbon nanotubes enable NIR-II single particle imaging in live brain slices at ultra-low excitation doses. Sci. Rep. 10, 5286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heller, D. A. et al. Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics. Proc. Natl Acad. Sci. USA 108, 8544–8549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotechnol. 4, 114–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, J.-H. et al. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat. Chem. 1, 473–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, J. et al. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J. Am. Chem. Soc. 133, 567–581 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Jin, H. et al. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 5, 302–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yaari, Z. et al. Nanoreporter of an enzymatic suicide inactivation pathway. Nano Lett. 20, 7819–7827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao, M. et al. A tumor-microenvironment-responsive lanthanide–cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma. Adv. Mater. 32, 2001172 (2020).

    Article  CAS  Google Scholar 

  104. Li, P. et al. Quantifying the fast dynamics of HClO in living cells by a fluorescence probe capable of responding to oxidation and reduction events within the time scale of milliseconds. Anal. Chem. 92, 12987–12995 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Zhao, Q. et al. Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chem. Sci. 6, 1825–1831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jena, P. V. et al. A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 11, 10689–10703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011).

    Article  CAS  Google Scholar 

  108. Ma, X. et al. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Am. Chem. Soc. 136, 11085–11092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma, T. et al. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. J. Am. Chem. Soc. 140, 211–218 (2018). Multiplexed nanosensor technology to detect protease activity and pH in the tumour microenvironment.

    Article  CAS  PubMed  Google Scholar 

  110. Hou, Y. et al. Protease-activated ratiometric fluorescent probe for pH mapping of malignant tumors. ACS Nano 9, 3199–3205 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Zhao, T. et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat. Biomed. Eng. 1, 0006 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Voskuil, F. J. et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat. Commun. 11, 3257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Andreev, O. A., Engelman, D. M. & Reshetnyak, Y. K. Targeting acidic diseased tissue: new technology based on use of the pH (low) insertion peptide (pHLIP). Chim. Oggi 27, 34–37 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. Andreev, O. A. et al. pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proc. Natl Acad. Sci. USA 107, 4081–4086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Crawford, T. et al. pHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Sci. Rep. 10, 18356 (2020). Nanosensor currently under clinical trial for image-guided surgery and other applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bauer, D. et al. PET imaging of acidic tumor environment with 89Zr-labeled pHLIP probes. Front. Oncol. 12, 882541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kang, B., Austin, L. A. & El-Sayed, M. A. Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes. ACS Nano 8, 4883–4892 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Li, S.-S. et al. Monitoring the changes of pH in lysosomes during autophagy and apoptosis by plasmon enhanced Raman imaging. Anal. Chem. 91, 8398–8405 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Guo, J. et al. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst 145, 4852–4859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jamieson, L. E. et al. Targeted SERS nanosensors measure physicochemical gradients and free energy changes in live 3D tumor spheroids. Nanoscale 8, 16710–16718 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Chiappini, C. et al. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano 9, 5500–5509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, Z. & Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol. Life Sci. 73, 377–392 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Leone Robert, D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lau, A. N. & Vander Heiden, M. G. Metabolism in the tumor microenvironment. Annu. Rev. Cancer Biol. 4, 17–40 (2020).

    Article  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04473378 (2019).

  126. Nascimento, R. A. S. et al. Single cell ‘glucose nanosensor’ verifies elevated glucose levels in individual cancer cells. Nano Lett. 16, 1194–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma, Z. et al. In-situ monitoring of glucose metabolism in cancer cell microenvironments based on hollow fiber structure. Biosens. Bioelectron. 162, 112261 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Actis, P. et al. Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8, 546–553 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Nashimoto, Y. et al. Evaluation of mRNA localization using double barrel scanning ion conductance microscopy. ACS Nano 10, 6915–6922 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Damaghi, M. et al. Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nat. Commun. 6, 8752 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Brand, A. et al. DHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Cali, J. J. et al. Compounds and methods for assaying redox state of metabolically active cells and methods for measuring NAD(P)/NAD(P)H. US patent US9273343B2 (2016).

  134. Zheng, X. T., Yang, H. B. & Li, C. M. Optical detection of single cell lactate release for cancer metabolic analysis. Anal. Chem. 82, 5082–5087 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Jena, B. K. & Raj, C. R. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal. Chem. 78, 6332–6339 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Xu, Y.-T. et al. A practical electrochemical nanotool for facile quantification of amino acids in single cell. Small 17, 2100503 (2021).

    Article  CAS  Google Scholar 

  137. Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 31, 62–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V. & Fendt, S.-M. Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev. Cell 56, 1363–1393 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Mancini, R. et al. Metabolic features of cancer stem cells: the emerging role of lipid metabolism. Oncogene 37, 2367–2378 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Hendrikx, T., Walenbergh, S. M. A., Hofker, M. H. & Shiri-Sverdlov, R. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis. Obes. Rev. 15, 424–433 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Mehlem, A., Hagberg, C. E., Muhl, L., Eriksson, U. & Falkevall, A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc. 8, 1149–1154 (2013).

    Article  PubMed  Google Scholar 

  143. Hofmann, K. et al. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J. Lipid Res. 55, 583–591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Takatori, S., Mesman, R. & Fujimoto, T. Microscopic methods to observe the distribution of lipids in the cellular membrane. Biochemistry 53, 639–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Mondal, S., Rakshit, A., Pal, S. & Datta, A. Cell permeable ratiometric fluorescent sensors for imaging phosphoinositides. ACS Chem. Biol. 11, 1834–1843 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Galassi, T. V. et al. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Sci. Transl. Med. 10, eaar2680 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yong, C., Stewart, G. D. & Frezza, C. Oncometabolites in renal cancer. Nat. Rev. Nephrol. 16, 156–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, Y. & Yang, C. Oncometabolites in cancer: current understanding and challenges. Cancer Res. 81, 2820–2823 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Yang, M., Soga, T. & Pollard, P. J. Oncometabolites: linking altered metabolism with cancer. J. Clin. Invest. 123, 3652–3658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kaper, T. et al. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 5, e257 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Fehr, M., Lalonde, S., Lager, I., Wolff, M. W. & Frommer, W. B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J. Biol. Chem. 278, 19127–19133 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Zhang, J. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959–968 (2013). Strategy to develop optical nanosensors based on synthetic molecular recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Amir, D., Hendler-Neumark, A., Wulf, V., Ehrlich, R. & Bisker, G. Oncometabolite fingerprinting using fluorescent single-walled carbon nanotubes. Adv. Mater. Interfaces 9, 2101591 (2022).

    Article  CAS  Google Scholar 

  154. Ježek, P. 2-Hydroxyglutarate in cancer cells. Antioxid. Redox Signal. 33, 903–926 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ehrlich, R., Hendler-Neumark, A., Wulf, V., Amir, D. & Bisker, G. Optical nanosensors for real-time feedback on insulin secretion by β-cells. Small 17, 2101660 (2021).

    Article  CAS  Google Scholar 

  156. Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Linder, B. & Kögel, D. Autophagy in cancer cell death. Biology 8, 82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huefner, A. et al. Characterization and visualization of vesicles in the endo-lysosomal pathway with surface-enhanced Raman spectroscopy and chemometrics. ACS Nano 10, 307–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Chen, Z. et al. Single gold@silver nanoprobes for real-time tracing the entire autophagy process at single-cell level. J. Am. Chem. Soc. 137, 1903–1908 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Ou, Y.-C., Wen, X. & Bardhan, R. Cancer immunoimaging with smart nanoparticles. Trends Biotechnol. 38, 388–403 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Dauphin-Ducharme, P. et al. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens. 4, 2832–2837 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Arroyo-Currás, N. et al. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl Acad. Sci. USA 114, 645–650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Parolo, C. et al. Real-time monitoring of a protein biomarker. ACS Sens. 5, 1877–1881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zheng, A. et al. CD16/PD-L1 bi-specific aptamer for cancer immunotherapy through recruiting NK cells and acting as immunocheckpoint blockade. Mol. Ther. Nucleic 27, 998–1009 (2022).

    Article  CAS  Google Scholar 

  165. Cui, D., Li, J., Zhao, X., Pu, K. & Zhang, R. Semiconducting polymer nanoreporters for near-infrared chemiluminescence imaging of immunoactivation. Adv. Mater. 32, 1906314 (2020).

    Article  CAS  Google Scholar 

  166. Dheer, D., Nicolas, J. & Shankar, R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv. Drug Deliv. Rev. 151152, 130–151 (2019).

    Article  PubMed  Google Scholar 

  167. Shahriari, M. et al. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Rel. 308, 172–189 (2019).

    Article  CAS  Google Scholar 

  168. Vizovisek, M., Ristanovic, D., Menghini, S., Christiansen, M. G. & Schuerle, S. The tumor proteolytic landscape: a challenging frontier in cancer diagnosis and therapy. Int. J. Mol. Sci. 22, 2514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bengsch, F. et al. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33, 4474–4484 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Scott, J. I., Deng, Q. & Vendrell, M. Near-infrared fluorescent probes for the detection of cancer-associated proteases. ACS Chem. Biol. 16, 1304–1317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kwon, E. J., Dudani, J. S. & Bhatia, S. N. Ultrasensitive tumour-penetrating nanosensors of protease activity. Nat. Biomed. Eng. 1, 0054 (2017). Development of optical nanosensors that are selectively activated by tumour-specific protease to detect small tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dudani, J. S., Jain, P. K., Kwong, G. A., Stevens, K. R. & Bhatia, S. N. Photoactivated spatiotemporally-responsive nanosensors of in vivo protease activity. ACS Nano 9, 11708–11717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Myochin, T. et al. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes. J. Am. Chem. Soc. 137, 4759–4765 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Fernald, K. & Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol. 23, 620–633 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Liu, C. et al. A graphene oxide nanosensor enables the co-delivery of aptamer and peptide probes for fluorescence imaging of a cascade reaction in apoptotic signaling. Analyst 143, 208–214 (2018).

    Article  CAS  Google Scholar 

  176. Zhang, X. et al. A fluorescent turn on nanoprobe for simultaneous visualization of dual-targets involved in cell apoptosis and drug screening in living cells. Nanoscale 9, 10861–10868 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  179. Christian, S. et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol. 163, 871–878 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Safaee, M. M., Gravely, M. & Roxbury, D. A wearable optical microfibrous biomaterial with encapsulated nanosensors enables wireless monitoring of oxidative stress. Adv. Healthc. Mater. 31, 2006254 (2021).

    CAS  Google Scholar 

  181. Harvey, J. D. et al. A carbon nanotube reporter of microRNA hybridization events in vivo. Nat. Biomed. Eng. 1, 0041 (2017). Minimally invasive implantable sensor technology to longitudinally monitor tumour biomarkers in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Horowitz, L. et al. Multiplexed drug testing of tumor slices using a microfluidic platform. npj Precis. Oncol. 4, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wong, B. S. et al. A microfluidic cell-migration assay for the prediction of progression-free survival and recurrence time of patients with glioblastoma. Nat. Biomed. Eng. 5, 26–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Serkova, N. J. Nanoparticle-based magnetic resonance imaging on tumor-associated macrophages and inflammation. Front. Immunol. 8, 590 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Guo, J. et al. Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method. Lab Chip 20, 1577–1585 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Song, J. W. et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS ONE 4, e5756 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Eduati, F. et al. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun. 9, 2434 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Aref, A. R. et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr. Biol. 5, 381–389 (2013).

    Article  CAS  Google Scholar 

  190. Zhao, S.-P. et al. Three-dimensional cell culture and drug testing in a microfluidic sidewall-attached droplet array. Anal. Chem. 89, 10153–10157 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Shang, M. et al. Microfluidic studies of hydrostatic pressure-enhanced doxorubicin resistance in human breast cancer cells. Lab Chip 21, 746–754 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Hassell, B. A. et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 21, 508–516 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Ying, L. et al. Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform. PLoS ONE 10, e0129593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mann, F. A., Galonska, P., Herrmann, N., & Kruss, S. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat. Protoc. 17, 727–747 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Kwon, H. et al. Optical probing of local pH and temperature in complex fluids with covalently functionalized, semiconducting carbon nanotubes. J. Phys. Chem. C 119, 3733–3739 (2015).

    Article  CAS  Google Scholar 

  196. Zeng, W. et al. Ratiometric imaging of MMP-2 activity facilitates tumor detection using activatable near-infrared fluorescent semiconducting polymer nanoparticles. Small 17, 2101924 (2021).

    Article  CAS  Google Scholar 

  197. Tavaré, R. et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 76, 73–82 (2016).

    Article  PubMed  Google Scholar 

  198. Dai, X., Zhou, W., Gao, T., Liu, J. & Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776–782 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sontheimer-Phelps, A., Hassell, B. A. & Ingber, D. E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04996355 (2021).

  201. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04755907 (2021).

  202. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05130801 (2021).

  203. Daldrup-Link, H. E. et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin. Cancer Res. 17, 5695–5704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04682847 (2020).

  205. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update post COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Benezra, M. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Investig. 121, 2768–2780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02106598 (2014).

  208. Martin, K. H. & Dayton, P. A. Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 329–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03199274 (2017).

  210. Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  212. Gurbatri, C. R., Arpaia, N. & Danino, T. Engineering bacteria as interactive cancer therapies. Science 378, 858–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH (R01-CA215719, R01-NS116353, R01-NS122987, R01-DK129299 and the Cancer Center Support Grant, P30-CA008748), the National Science Foundation CAREER Award (1752506), the American Cancer Society Research Scholar Grant (GC230452), the Ara Parseghian Foundation, the Honorable Tina Brozman Foundation for Ovarian Cancer Research, the Ovarian Cancer Research Alliance (CRDGAI-2023-3-1003), the Pershing Square Sohn Cancer Research Alliance, the Expect Miracles Foundation — Financial Services Against Cancer, Emerson Collective, the Experimental Therapeutics Center, William H. Goodwin and Alice Goodwin and the Commonwealth Foundation for Cancer Research, Burroughs Wellcome Funds, AACR, Stand Up to Cancer. M.K. was supported by the NIH (K99-EB033580) and the Marie-Josée Kravis Women in Science Endeavor Postdoctoral Fellowship. M.P. was supported by an NIH grant (5T32CA062948) and the Tow Foundation Postdoctoral Fellowship. S.B.R. was supported by the MERIT Mandel Fellowship, Memorial Sloan Kettering Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

M.K., M.P., C.C. and S.B.R. researched data for the article. M.K., M.P., C.C., K.G., T.T. and D.A.H. contributed substantially to discussion of the content. M.K., M.P., C.C., S.B.R. and D.A.H wrote the article. M.K., K.G., T.T. and D.A.H reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Daniel A. Heller.

Ethics declarations

Competing interests

D.A.H. is a co-founder and officer with equity interest in Lime Therapeutics, Inc. and co-founder with equity interest in Selectin Therapeutics Inc. and Resident Diagnostics, Inc. and a member of the scientific advisory board of Concarlo Therapeutics, Inc., Nanorobotics Inc. and Mediphage Bioceuticals, Inc. T.T. has research support from ONO Pharma USA, Inc. (unrelated to this work) and is a member of the scientific advisory board of Lime Therapeutics, Inc. with equity interest. M.K., M.P., C.C., S.B.R. and K.G. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Xiaoyuan Chen, Twan Lammers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bottleneck effects

An event that drastically reduces the size of a population. Bottlenecks produce a decrease in the gene pool of the population because many alleles, or gene variants, that were present in the original population are lost. Owing to the loss of genetic variation, the new population can become genetically distinct from the original population.

Chemokines

A family of inducible chemoattractant cytokines that regulate the chemotaxis of tumour cells and other cell types. Chemokines also affect processes such as proliferation, migration and invasion.

Cytokines

Small, secreted proteins produced by immune cells that are used in cellular communication.

DNAzyme

Single-stranded DNA oligonucleotides with high catalytic activities towards specific substrates.

Electrospun nanofibres

Fibres with diameters in the nanometre range created using electrospinning. Electrospinning relies on the electrostatic repulsion between surface charges to continuously draw nanofibres from a viscoelastic fluid.

Enhanced permeability and retention effect

Tumours can exhibit increased permeability and retention of large molecular weight molecules or nanoparticles primarily owing to structural abnormality of tumour vasculature.

Enzymatic suicide inactivation

Irreversible inhibition of  the activity of an enzyme.

Gefitinib

The first quinazoline-based reversible small-molecule epidermal growth factor receptor tyrosine kinase inhibitor.

Genetic drift

Changes in the frequency of a genetic variant in a population owing to chance alone.

Hypoxia

A subnormal concentration of oxygen. In cancer tissue, hypoxia is often the result of abnormal vasculature.

Immune checkpoint receptors

Cell-surface molecules that are expressed by T cells and the normal function of which is to maintain self-tolerance and regulate the magnitude and duration of immune responses. Checkpoint receptors, including PD1 and TIM3, can be co-opted by tumours to inhibit antitumour immune responses.

Immunoediting

Describes the complex relationship between a developing tumour under constant pressure from the host immune system. Cancer immunoediting consists of three phases: elimination (that is, cancer immunosurveillance), equilibrium and escape. The immune system not only protects the host against development of primary cancers but also sculpts tumour immunogenicity.

Mechanotransduction

Mechanisms by which cells convert mechanical stimulus into biochemical signals.

Microcontact printed lines

Microcontact printing is a method of transferring patterns of various materials such as polymers, proteins, nanoparticles and so on, onto another surface. Typically, a polydimethylsiloxane stamp is dipped in a solution of a material that has to be patterned and is brought into contact with the surface.

Microfluidic systems

These small ‘plumbing’ systems deal with the accurate control and manipulation of fluids that are confined to micrometre-sized environments. This enables the supply of nutrients, oxygen and the flow of media to be precisely controlled.

Mouse tumour xenograft models

Hetero-transplantation of human tumour cells into immunodeficient mice, in either the orthotopic (same organ) site or ectopic (foreign) site. Mice are typically athymic nu/nu T cell-deficient or severe combined immunodeficient, lacking B cell and T cell functions.

Multicellular spheroids

Multicellular spheroids are either self-assembling or are forced to grow as 3D spherical cell clusters. They can be established from a single cell type or can be multicellular mixtures of tumour, stromal and immune cells. These aggregates can mimic tumour cell behaviour more effectively because they harbour a gradient of cells that are surface-exposed and cells that are deeply buried, thereby also establishing a gradient of nutrient and oxygen availability.

Nanolithography

Set of top-down fabrication techniques that allow patterning materials and building devices with nanoscale resolution.

Nanopipette

A nanoscale pipette that locally collects analytes for mass spectrometry, electrochemical and optical analysis.

Nanoprinted scaffolds

Three-dimensional scaffolds with nanometre-scale features that mimic interstitial tissue or extracellular matrix. They are used either as cell migration or tumour formation platforms.

Organoids

Tissue-like 3D cultures originating from human stem cells, organ-specific progenitor cells or dissociated tumour tissues, grown in a reconstituted extracellular matrix. Organoids mimic primary tissues by retaining some aspects of tissue architecture and function. Tumour-derived organoids retain the diversity and fidelity of mutational landscapes and, when transplanted into mice, reconstitute many of the histopathological features of their tumours of origin.

Plasmonic nanoparticles

Metallic nanoparticles whose electron density can couple with certain wavelengths of light. Plasmonic nanoparticles exhibit interesting scattering, absorbance and coupling properties on the basis of their structures, geometries and relative positions.

Sacrificial bioink

A biomaterial used as ink in 3D printing of biomimetic structures, which has gentle and reversible crosslinking properties and can be easily removed (or ‘sacrificed’) without harming the involved cells and structures.

Self-assembled microvessels

Spontaneously created in vitro vascular networks driven by inherent cellular interactions between endothelial cells and stromal cells to undergo morphogenesis.

Sentinel lymph nodes

The first lymph node that connects to a primary tumour site, also it is likely the first lymph node in which cancer cells spread.

Single-walled carbon nanotubes

sp2-Hybridized carbon-based hollow cylindrical nanostructures that exhibit unique electronic and optical properties for intracellular and in vivo imaging and sensing.

Solvatochromic shift

Phenomenon in which emission wavelength of a fluorophore changes in response to the dielectric constant of its environment.

Surface-enhanced Raman spectroscopy

Highly sensitive technique that enhances the Raman scattering of molecules supported by nanostructured materials.

Synthetic molecular recognition

Recognition of target analytes conferred by synthetic polymers that create a selective molecular recognition site on a nanoparticle for the molecule of interest, leading to sensitive and selective optical response.

Vascular lumen

The inside space of a vessel, composed of a cord of endothelial cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Panagiotakopoulou, M., Chen, C. et al. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 23, 581–599 (2023). https://doi.org/10.1038/s41568-023-00593-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00593-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer