Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Measuring and modelling tumour heterogeneity across scales

Abstract

Cancer development, progression and therapy response are heterogeneous and patient-specific. The biological and physical properties of tumour cells and their surrounding tissue microenvironments are critical regulators of these outcomes. How biological and physical properties integrate across length scales to shape disease heterogeneity is poorly understood, because few methods can measure, recapitulate and deconvolve these complex factors. In this Review, we classify regulators of cancer into three categories based on scale: tumour-cell-intrinsic, tissue-microenvironment and organism-level sources. For each length scale, we review the current state of the field, describe how engineering strategies can advance our understanding of these phenomena and assess potential avenues for clinical translation. Engineering strategies include analytical methods of measuring the physical properties of cells and their surroundings, biomimetic culture systems and the integration of these approaches with recent advances such as omics and patient-derived organoids. We further discuss epidemiological and training considerations to improve equity in cancer research. Ultimately, bioengineering approaches will help to generate scientific insights and advance precision-medicine-inspired treatments for patients with cancer.

Key points

  • Tumour heterogeneity comes in different forms across length scales and affects patient outcomes. Many of the factors affecting tumour heterogeneity still need to be taken into account to improve treatment.

  • Physical heterogeneity is an underestimated but major contributor to cancer. Clinically, there is a need to rethink how to identify and target these physical drivers as well as traditional molecular targets.

  • Many organism-level variables (age, race, diet) affect disease progression and therapy response for an individual patient, yet are not considered in most preclinical research.

  • Bioengineering strategies provide toolsets with which to analyse and model individual parameters that contribute to disease heterogeneity and affect tumour development, progression and therapy response.

  • Recruiting cancer researchers across disciplines and fostering interactions between cancer researchers, patients and clinicians will broaden trainee perspectives and foster insights to improve cancer care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key molecular effectors integrating biological and physical cues to modulate tumour-cell heterogeneity.
Fig. 2: Non-uniform tumor-associated solid stress and fluid pressure mediate spatial heterogeneity.
Fig. 3: Combining patient-derived materials with technologies to model and measure tumour heterogeneity.
Fig. 4: Sources of cancer heterogeneity across length scales.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    Article  Google Scholar 

  2. Li, Z., Seehawer, M. & Polyak, K. Untangling the web of intratumour heterogeneity. Nat. Cell Biol. 24, 1192–1201 (2022).

    Article  Google Scholar 

  3. Filho, O. M. et al. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov. 11, 2474–2487 (2021).

    Article  Google Scholar 

  4. Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868 (2020).

    Article  Google Scholar 

  5. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  Google Scholar 

  6. Beeghly, G. F., Amofa, K. Y., Fischbach, C. & Kumar, S. Regulation of tumor invasion by the physical microenvironment: lessons from breast and brain cancer. Annu. Rev. Biomed. Eng. 24, 29–59 (2022).

    Article  Google Scholar 

  7. Halmai, N. B. & Carvajal-Carmona, L. G. Diversifying preclinical research tools: expanding patient-derived models to address cancer health disparities. Trends Cancer 8, 291–294 (2022).

    Article  Google Scholar 

  8. Mayne, S. T., Playdon, M. C. & Rock, C. L. Diet, nutrition, and cancer: past, present and future. Nat. Rev. Clin. Oncol. 13, 504–515 (2016).

    Article  Google Scholar 

  9. Martini, R. et al. African ancestry — associated gene expression profiles in triple-negative breast cancer underlie altered tumor biology and clinical outcome in women of African descent. Cancer Discov. 12, 2530–2551 (2022).

    Article  Google Scholar 

  10. McCarthy, A. M. et al. Racial differences in quantitative measures of area and volumetric breast density. J. Natl. Cancer Inst. 108, djw104 (2016).

    Article  Google Scholar 

  11. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  Google Scholar 

  12. DelNero, P. et al. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55, 110–118 (2015).

    Article  Google Scholar 

  13. Fischbach, C. et al. Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc. Natl Acad. Sci. USA 106, 399–404 (2009).

    Article  Google Scholar 

  14. Statzer, C. & Ewald, C. Y. The extracellular matrix phenome across species. Matrix Biol. Plus 8, 100039 (2020).

    Article  Google Scholar 

  15. Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205–217.e12 (2018).

    Article  Google Scholar 

  16. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  Google Scholar 

  17. Andor, N., Maley, C. C. & Ji, H. P. Genomic instability in cancer: teetering on the limit of tolerance. Cancer Res. 77, 2179–2185 (2017).

    Article  Google Scholar 

  18. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    Article  Google Scholar 

  19. Park, J. S. et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578, 621–626 (2020).

    Article  Google Scholar 

  20. Rossi, M. et al. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 605, 747–753 (2022).

    Article  Google Scholar 

  21. Akella, N. M. et al. O-GlcNAc transferase regulates cancer stem-like potential of breast cancer cells. Mol. Cancer Res. 18, 585–598 (2020).

    Article  Google Scholar 

  22. Shimpi, A. A. et al. Convergent approaches to delineate the metabolic regulation of tumor invasion by hyaluronic acid biosynthesis. Adv. Healthc. Mater 12, e2202224 (2023).

    Article  Google Scholar 

  23. Peng, C. et al. Regulation of the Hippo–YAP pathway by glucose sensor O-GlcNAcylation. Mol. Cell 68, 591–604.e5 (2017).

    Article  Google Scholar 

  24. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2018).

    Article  Google Scholar 

  25. Karacosta, L. G. et al. Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution. Nat. Commun. 10, 5587 (2019).

    Article  Google Scholar 

  26. Padmanaban, V. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573, 439–444 (2019).

    Article  Google Scholar 

  27. Kröger, C. et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc. Natl Acad. Sci. USA 116, 7353–7362 (2019).

    Article  Google Scholar 

  28. Liu, S. et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2, 78–91 (2014).

    Article  Google Scholar 

  29. Luo, M. et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 28, 69–86.e6 (2018).

    Article  Google Scholar 

  30. Gensbittel, V. et al. Mechanical adaptability of tumor cells in metastasis. Dev. Cell 56, 164–179 (2021).

    Article  Google Scholar 

  31. Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018).

    Article  Google Scholar 

  32. Wullkopf, L. et al. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell 29, 2378–2385 (2018).

    Article  Google Scholar 

  33. Lv, J. et al. Cell softness regulates tumorigenicity and stemness of cancer cells. EMBO J. 40, e106123 (2021).

    Article  Google Scholar 

  34. Staunton, J. R., So, W. Y., Paul, C. D. & Tanner, K. High-frequency microrheology in 3D reveals mismatch between cytoskeletal and extracellular matrix mechanics. Proc. Natl Acad. Sci. USA 116, 14448–14455 (2019).

    Article  Google Scholar 

  35. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  Google Scholar 

  36. Lautscham, L. A. et al. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys. J. 109, 900–913 (2015).

    Article  Google Scholar 

  37. Patteson, A. E. et al. Vimentin protects cells against nuclear rupture and DNA damage during migration. J. Cell Biol. 218, 4079–4092 (2019).

    Article  Google Scholar 

  38. Stephens, A. D., Banigan, E. J., Adam, S. A., Goldman, R. D. & Marko, J. F. Chromatin and lamin a determine two different mechanical response regimes of the cell nucleus. Mol. Biol. Cell 28, 1984–1996 (2017).

    Article  Google Scholar 

  39. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  Google Scholar 

  40. Shah, P. et al. Nuclear deformation causes DNA damage by increasing replication stress. Curr. Biol. 31, 753–765.e6 (2021).

    Article  Google Scholar 

  41. Xia, Y. et al. Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. J. Cell Biol. 218, 2542–2563 (2019).

    Article  Google Scholar 

  42. Kuo, J. C.-H., Gandhi, J. G., Zia, R. N. & Paszek, M. J. Physical biology of the cancer cell glycocalyx. Nat. Phys. 14, 658–669 (2018).

    Article  Google Scholar 

  43. Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014).

    Article  Google Scholar 

  44. Barnes, J. M. et al. A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nat. Cell Biol. 20, 1203–1214 (2018).

    Article  Google Scholar 

  45. Woods, E. C. et al. A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression. eLife 6, e25752 (2017).

    Article  Google Scholar 

  46. Park, S. et al. Mucins form a nanoscale material barrier against immune cell attack. Preprint at bioRxiv https://doi.org/10.1101/2022.01.28.478211 (2022).

  47. Hudak, J. E., Canham, S. M. & Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 10, 69–75 (2013).

    Article  Google Scholar 

  48. Shon, D. J. et al. An enzymatic toolkit for selective proteolysis, detection, and visualization of mucin-domain glycoproteins. Proc. Natl Acad. Sci. USA 117, 21299–21307 (2020).

    Article  Google Scholar 

  49. Shurer, C. R. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 177, 1757–1770.e21 (2019).

    Article  Google Scholar 

  50. Bocci, F. et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc. Natl Acad. Sci. USA 116, 148–157 (2019).

    Article  Google Scholar 

  51. Conley, S. J. et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl Acad. Sci. USA 109, 2784–2789 (2012).

    Article  Google Scholar 

  52. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  Google Scholar 

  53. Ko, J. et al. Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes. Nat. Biotechnol. 40, 1654–1662 (2022).

    Article  Google Scholar 

  54. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  Google Scholar 

  55. Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202 (2015).

    Article  Google Scholar 

  56. Soteriou, D. et al. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01015-3 (2023).

    Article  Google Scholar 

  57. Deng, Y. et al. Inertial microfluidic cell stretcher (iMCS): fully automated, high-throughput, and near real-time cell mechanotyping. Small 13, 1700705 (2017).

    Article  Google Scholar 

  58. Nikolić, M., Scarcelli, G. & Tanner, K. Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophys. J. 121, 3586–3599 (2022).

    Article  Google Scholar 

  59. Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018).

    Article  Google Scholar 

  60. Isomursu, A. et al. Directed cell migration towards softer environments. Nat. Mater. 21, 1081–1090 (2022).

    Article  Google Scholar 

  61. Bangasser, B. L. et al. Shifting the optimal stiffness for cell migration. Nat. Commun. 8, 15313 (2017).

    Article  Google Scholar 

  62. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article  Google Scholar 

  63. Beri, P. et al. Cell adhesiveness serves as a biophysical marker for metastatic potential. Cancer Res. 80, 901–911 (2020).

    Article  Google Scholar 

  64. Entenberg, D., Oktay, M. H. & Condeelis, J. S. Intravital imaging to study cancer progression and metastasis. Nat. Rev. Cancer 23, 25–42 (2023).

    Article  Google Scholar 

  65. Lin, Y., Leartprapun, N., Luo, J. C. & Adie, S. G. Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging. Nat. Commun. 13, 3465 (2022).

    Article  Google Scholar 

  66. Steinwachs, J. et al. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13, 171–176 (2016).

    Article  Google Scholar 

  67. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  Google Scholar 

  68. Chandler, E. M. et al. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proc. Natl Acad. Sci. USA 109, 9786–9791 (2012).

    Article  Google Scholar 

  69. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  Google Scholar 

  70. Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).

    Article  Google Scholar 

  71. Kerdidani, D. et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 219, e20210815 (2022).

    Article  Google Scholar 

  72. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  Google Scholar 

  73. Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39, e104063 (2020).

    Article  Google Scholar 

  74. Zhou, Y. et al. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell 38, 818–828.e5 (2020).

    Article  Google Scholar 

  75. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 330, 827–830 (2010).

    Article  Google Scholar 

  76. Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  Google Scholar 

  77. Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    Article  Google Scholar 

  78. Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    Article  Google Scholar 

  79. Franses, J. W., Baker, A. B., Chitalia, V. C. & Edelman, E. R. Stromal endothelial cells directly influence cancer progression. Sci. Transl Med. 3, 66ra5 (2011).

    Article  Google Scholar 

  80. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  Google Scholar 

  81. Charles, N. et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152 (2010).

    Article  Google Scholar 

  82. Infanger, D. W. et al. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res. 73, 7079–7089 (2013).

    Article  Google Scholar 

  83. Park, J., Euhus, D. M. & Scherer, P. E. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr. Rev. 32, 550–570 (2011).

    Article  Google Scholar 

  84. Bochet, L. et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013).

    Article  Google Scholar 

  85. Li, Y. et al. Compression-induced dedifferentiation of adipocytes promotes tumor progression. Sci. Adv. 6, eaax5611 (2020).

    Article  Google Scholar 

  86. Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8, 1006–1025 (2018).

    Article  Google Scholar 

  87. Flaherty, S. E. et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 363, 989–993 (2019).

    Article  Google Scholar 

  88. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article  Google Scholar 

  89. Norreen-Thorsen, M. et al. A human adipose tissue cell-type transcriptome atlas. Cell Rep. 40, 111046 (2022).

    Article  Google Scholar 

  90. Seo, B. R. et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Transl Med. 7, 301ra130 (2015).

    Article  Google Scholar 

  91. Wishart, A. L. et al. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci. Adv. 6, eabc3175 (2020).

    Article  Google Scholar 

  92. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    Article  Google Scholar 

  93. Ma, R.-Y., Black, A. & Qian, B.-Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).

    Article  Google Scholar 

  94. Laviron, M. et al. Tumor-associated macrophage heterogeneity is driven by tissue territories in breast cancer. Cell Rep. 39, 110865 (2022).

    Article  Google Scholar 

  95. Li, S. et al. Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep. 39, 110609 (2022).

    Article  Google Scholar 

  96. Wolf, Y. & Samuels, Y. Intratumor heterogeneity and antitumor immunity shape one another bidirectionally. Clin. Cancer Res. 28, 2994–3001 (2022).

    Article  Google Scholar 

  97. Peng, D. H. et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nat. Commun. 11, 4520 (2020).

    Article  Google Scholar 

  98. Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).

    Article  Google Scholar 

  99. Pruitt, H. C. et al. Collagen fiber structure guides 3D motility of cytotoxic T lymphocytes. Matrix Biol. 85–86, 147–159 (2020).

    Article  Google Scholar 

  100. Springer, N. L. et al. Obesity-associated extracellular matrix remodeling promotes a macrophage phenotype similar to tumor-associated macrophages. Am. J. Pathol. 189, 2019–2035 (2019).

    Article  Google Scholar 

  101. El-Kenawi, A. et al. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Br. J. Cancer 121, 556–566 (2019).

    Article  Google Scholar 

  102. Naba, A., Clauser, K. R., Lamar, J. M., Carr, S. A. & Hynes, R. O. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 3, e01308 (2014).

    Article  Google Scholar 

  103. Berestjuk, I. et al. Targeting discoidin domain receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma. EMBO Mol. Med. 14, e11814 (2022).

    Article  Google Scholar 

  104. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    Article  Google Scholar 

  105. Di Martino, J. S. et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat. Cancer 3, 90–107 (2022).

    Article  Google Scholar 

  106. Barney, L. E. et al. Tumor cell–organized fibronectin maintenance of a dormant breast cancer population. Sci. Adv. 6, eaaz4157 (2020).

    Article  Google Scholar 

  107. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).

    Article  Google Scholar 

  108. Schwartz, A. D. et al. A biomaterial screening approach reveals microenvironmental mechanisms of drug resistance. Integr. Biol. 9, 912–924 (2017).

    Article  Google Scholar 

  109. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022).

    Article  Google Scholar 

  110. Brooks, E. A., Gencoglu, M. F., Corbett, D. C., Stevens, K. R. & Peyton, S. R. An omentum-inspired 3D PEG hydrogel for identifying ECM-drivers of drug resistant ovarian cancer. APL Bioeng. 3, 026106 (2019).

    Article  Google Scholar 

  111. Chang, J. M. et al. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur. Radiol. 23, 2450–2458 (2013).

    Article  Google Scholar 

  112. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  Google Scholar 

  113. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).

    Article  Google Scholar 

  114. Provenzano, P. P. et al. Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article  Google Scholar 

  115. Ray, A., Slama, Z. M., Morford, R. K., Madden, S. A. & Provenzano, P. P. Enhanced directional migration of cancer stem cells in 3D aligned collagen matrices. Biophys. J. 112, 1023–1036 (2017).

    Article  Google Scholar 

  116. Stowers, R. S. et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 3, 1009–1019 (2019).

    Article  Google Scholar 

  117. Nasrollahi, S. et al. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials 146, 146–155 (2017).

    Article  Google Scholar 

  118. Hall, M. S. et al. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016).

    Article  Google Scholar 

  119. Han, Y. L. et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl Acad. Sci. USA 115, 4075–4080 (2018).

    Article  Google Scholar 

  120. Krajina, B. A. et al. Microrheology reveals simultaneous cell-mediated matrix stiffening and fluidization that underlie breast cancer invasion. Sci. Adv. 7, eabe1969 (2021).

    Article  Google Scholar 

  121. Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015).

    Article  Google Scholar 

  122. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  Google Scholar 

  123. Clark, A. G. et al. Self-generated gradients steer collective migration on viscoelastic collagen networks. Nat. Mater. 21, 1200–1210 (2022).

    Article  Google Scholar 

  124. Nam, S. et al. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4–PI3K/Akt–p27 Kip1 signaling axis. Sci. Adv. 5, eaaw6171 (2019).

    Article  Google Scholar 

  125. Adebowale, K. et al. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat. Mater. 20, 1290–1299 (2021).

    Article  Google Scholar 

  126. Ilina, O. et al. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).

    Article  Google Scholar 

  127. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci. USA 109, 10334–10339 (2012).

    Article  Google Scholar 

  128. Ling, L. et al. Obesity-associated adipose stromal cells promote breast cancer invasion through direct cell contact and ECM remodeling. Adv. Funct. Mater. 30, 1910650 (2020).

    Article  Google Scholar 

  129. Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 924 (2017).

    Article  Google Scholar 

  130. Grolman, J. M., Weinand, P. & Mooney, D. J. Extracellular matrix plasticity as a driver of cell spreading. Proc. Natl Acad. Sci. USA 117, 202008801 (2020).

    Article  Google Scholar 

  131. Murrell, M., Kamm, R. & Matsudaira, P. Substrate viscosity enhances correlation in epithelial sheet movement. Biophys. J. 101, 297–306 (2011).

    Article  Google Scholar 

  132. Stylianopoulos, T. et al. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 73, 3833–3841 (2013).

    Article  Google Scholar 

  133. Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).

    Article  Google Scholar 

  134. Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA 109, 911–916 (2012).

    Article  Google Scholar 

  135. Seano, G. et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3, 230–245 (2019).

    Article  Google Scholar 

  136. Delarue, M. et al. Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys. J. 107, 1821–1828 (2014).

    Article  Google Scholar 

  137. Kim, B. G. et al. Compression-induced expression of glycolysis genes in CAFs correlates with EMT and angiogenesis gene expression in breast cancer. Commun. Biol. 2, 313 (2019).

    Article  Google Scholar 

  138. Pathak, A. P., Artemov, D., Neeman, M. & Bhujwalla, Z. M. Lymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype. Cancer Res. 66, 5151–5158 (2006).

    Article  Google Scholar 

  139. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    Article  Google Scholar 

  140. Cornelison, R. C., Brennan, C. E., Kingsmore, K. M. & Munson, J. M. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci. Rep. 8, 17057 (2018).

    Article  Google Scholar 

  141. Munson, J. M., Bellamkonda, R. V. & Swartz, M. A. Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res. 73, 1536–1546 (2013).

    Article  Google Scholar 

  142. Shieh, A. C., Rozansky, H. A., Hinz, B. & Swartz, M. A. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71, 790–800 (2011).

    Article  Google Scholar 

  143. Bera, K. et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature 611, 365–373 (2022).

    Article  Google Scholar 

  144. Beri, P. et al. Biomaterials to model and measure epithelial cancers. Nat. Rev. Mater. 3, 418–430 (2018).

    Article  Google Scholar 

  145. Oudin, M. J. et al. Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov. 6, 516–531 (2016).

    Article  Google Scholar 

  146. Sapudom, J. et al. Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices. Acta Biomater. 50, 259–270 (2017).

    Article  Google Scholar 

  147. Offeddu, G. S. et al. The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination. Commun. Biol. 4, 255 (2021).

    Article  Google Scholar 

  148. Velez, D. O. et al. 3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress. Integr. Biol. 11, 221–234 (2019).

    Article  MathSciNet  Google Scholar 

  149. Seo, B. R. et al. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc. Natl Acad. Sci. USA 117, 11387–11398 (2020).

    Article  Google Scholar 

  150. Velez, D. O. et al. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 8, 1651 (2017).

    Article  Google Scholar 

  151. Ulrich, T. A., Jain, A., Tanner, K., MacKay, J. L. & Kumar, S. Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices. Biomaterials 31, 1875–1884 (2010).

    Article  Google Scholar 

  152. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    Article  Google Scholar 

  153. Singh, S. P., Schwartz, M. P., Lee, J. Y., Fairbanks, B. D. & Anseth, K. S. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater. Sci. 2, 1024–1034 (2014).

    Article  Google Scholar 

  154. Hanjaya-Putra, D. et al. Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J. Cell. Mol. Med. 14, 2436–2447 (2010).

    Article  Google Scholar 

  155. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  Google Scholar 

  156. Ondeck, M. G. et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proc. Natl Acad. Sci. USA 116, 3502–3507 (2019).

    Article  Google Scholar 

  157. Watson, A. W. et al. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep. 35, 109293 (2021).

    Article  Google Scholar 

  158. Hanjaya-Putra, D. et al. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33, 6123–6131 (2012).

    Article  Google Scholar 

  159. Allen, S. C., Widman, J. A., Datta, A. & Suggs, L. J. Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr. Biol. 12, 161–174 (2020).

    Article  Google Scholar 

  160. Matera, D. L. et al. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci. Adv. 6, eabb5069 (2020).

    Article  Google Scholar 

  161. Arora, P. D., Narani, N. & McCulloch, C. A. The compliance of collagen gels regulates transforming growth factor-β induction of α-smooth muscle actin in fibroblasts. Am. J. Pathol. 154, 871–882 (1999).

    Article  Google Scholar 

  162. Hinz, B., Dugina, V., Ballestrem, C., Wehrle-Haller, B. & Chaponnier, C. α-Smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol. Biol. Cell 14, 2508–2519 (2003).

    Article  Google Scholar 

  163. Campàs, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Article  Google Scholar 

  164. Träber, N. et al. Polyacrylamide bead sensors for in vivo quantification of cell-scale stress in zebrafish development. Sci. Rep. 9, 17031 (2019).

    Article  Google Scholar 

  165. Stohrer, M., Boucher, Y., Stangassinger, M. & Jain, R. K. Oncotic pressure in solid tumors is elevated. Cancer Res. 60, 4251–4255 (2000).

    Google Scholar 

  166. Ozerdem, U. Measuring interstitial fluid pressure with fiberoptic pressure transducers. Microvasc. Res. 77, 226–229 (2009).

    Article  Google Scholar 

  167. DuFort, C. C. et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel–fluid phase. Biophys. J. 110, 2106–2119 (2016).

    Article  Google Scholar 

  168. Kingsmore, K. M. et al. MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioeng. 2, 031905 (2018).

    Article  Google Scholar 

  169. Fernández-Sánchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    Article  Google Scholar 

  170. Kim, B. G. et al. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis. 8, e2646–e2646 (2017).

    Article  Google Scholar 

  171. Pisano, M., Triacca, V., Barbee, K. A. & Swartz, M. A. An in vitro model of the tumor–lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr. Biol. 7, 525–533 (2015).

    Article  Google Scholar 

  172. Piotrowski-Daspit, A. S., Tien, J. & Nelson, C. M. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr. Biol. 8, 319–331 (2016).

    Article  Google Scholar 

  173. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  Google Scholar 

  174. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  Google Scholar 

  175. He, F. et al. Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis. Proc. Natl Acad. Sci. USA 114, 10542–10547 (2017).

    Article  Google Scholar 

  176. Chiou, A. E. et al. Breast cancer-secreted factors perturb murine bone growth in regions prone to metastasis. Sci. Adv. 7, eabf2283 (2021).

    Article  Google Scholar 

  177. Choi, S. et al. Biofunctional matrix models reveal mineral-dependent mechanoregulation of bone metastatic breast cancer. Preprint at bioRxiv https://doi.org/10.1101/2022.06.29.498001 (2022).

    Article  Google Scholar 

  178. Wang, H. et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27, 193–210 (2015).

    Article  Google Scholar 

  179. Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl Med. 10, eaan3464 (2018).

    Article  Google Scholar 

  180. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    Article  Google Scholar 

  181. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    Article  Google Scholar 

  182. Phillip, J. M. et al. Biophysical and biomolecular determination of cellular age in humans. Nat. Biomed. Eng. 1, 0093 (2017).

    Article  Google Scholar 

  183. Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 9, 82–95 (2019).

    Article  Google Scholar 

  184. Luo, X. et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 14, 82–92 (2016).

    Article  Google Scholar 

  185. Hsu, J.-W. et al. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am. J. Pathol. 182, 1811–1820 (2013).

    Article  Google Scholar 

  186. Amos-Landgraf, J. M. et al. Sex disparity in colonic adenomagenesis involves promotion by male hormones, not protection by female hormones. Proc. Natl Acad. Sci. USA 111, 16514–16519 (2014).

    Article  Google Scholar 

  187. Yuan, Y. et al. Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell 29, 711–722 (2016).

    Article  Google Scholar 

  188. Wilson, M. A. & Buetow, K. H. Novel mechanisms of cancer emerge when accounting for sex as a biological variable. Cancer Res. 80, 27–29 (2020).

    Article  Google Scholar 

  189. Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 49, 10–16 (2017).

    Article  Google Scholar 

  190. Haupt, S. et al. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat. Commun. 10, 5385 (2019).

    Article  Google Scholar 

  191. Quinn, G. P. et al. Cancer and lesbian, gay, bisexual, transgender/transsexual, and queer/questioning (LGBTQ) populations. CA. Cancer J. Clin. 65, 384–400 (2015).

    Article  Google Scholar 

  192. Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl Med. 4, 124ra27 (2012).

    Article  Google Scholar 

  193. Allen, B. G. et al. Ketogenic diets enhance oxidative stress and radio-chemotherapy responses in lung cancer xenografts. Clin. Cancer Res. 19, 3905–3913 (2013).

    Article  Google Scholar 

  194. Rubio-Patiño, C. et al. Low-protein diet induces IRE1α-dependent anticancer immunosurveillance. Cell Metab. 27, 828–842.e7 (2018).

    Article  Google Scholar 

  195. Gao, X. et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572, 397–401 (2019).

    Article  Google Scholar 

  196. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    Article  Google Scholar 

  197. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  Google Scholar 

  198. Jeon, J. S. et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA 112, 214–219 (2015).

    Article  Google Scholar 

  199. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  Google Scholar 

  200. Herland, A. et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 4, 421–436 (2020).

    Article  Google Scholar 

  201. Chramiec, A. et al. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip 20, 4357–4372 (2020).

    Article  Google Scholar 

  202. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e10 (2018).

    Article  Google Scholar 

  203. Boretto, M. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21, 1041–1051 (2019).

    Article  Google Scholar 

  204. Driehuis, E. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl Acad. Sci. USA 116, 26580–26590 (2019).

    Article  Google Scholar 

  205. LeSavage, B. L., Suhar, R. A., Broguiere, N., Lutolf, M. P. & Heilshorn, S. C. Next-generation cancer organoids. Nat. Mater. 21, 143–159 (2022).

    Article  Google Scholar 

  206. Linkous, A. et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 26, 3203–3211.e5 (2019).

    Article  Google Scholar 

  207. Pasch, C. A. et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin. Cancer Res. 25, 5376–5387 (2019).

    Article  Google Scholar 

  208. Brandenberg, N. et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4, 863–874 (2020).

    Article  Google Scholar 

  209. Phan, N. et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun. Biol. 2, 78 (2019).

    Article  Google Scholar 

  210. Walsh, A. J. et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 74, 5184–5194 (2014).

    Article  Google Scholar 

  211. Sharick, J. T. et al. Metabolic heterogeneity in patient tumor-derived organoids by primary site and drug treatment. Front. Oncol. 10, 553 (2020).

    Article  Google Scholar 

  212. Puschhof, J., Pleguezuelos-Manzano, C. & Clevers, H. Organoids and organs-on-chips: insights into human gut-microbe interactions. Cell Host Microbe 29, 867–878 (2021).

    Article  Google Scholar 

  213. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    Google Scholar 

  214. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  Google Scholar 

  215. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  Google Scholar 

  216. Fuhs, T. et al. Rigid tumours contain soft cancer cells. Nat. Phys. 18, 1510–1519 (2022).

    Article  Google Scholar 

  217. Prasad, V. & Mailankody, S. Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Intern. Med. 177, 1569–1575 (2017).

    Article  Google Scholar 

  218. Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    Article  Google Scholar 

  219. Kunitake, J. A. M. R. et al. Correlative imaging reveals physiochemical heterogeneity of microcalcifications in human breast carcinomas. J. Struct. Biol. 202, 25–34 (2018).

    Article  Google Scholar 

  220. Yuan, J. et al. Integrated analysis of genetic ancestry and genomic alterations across cancers. Cancer Cell 34, 549–560.e9 (2018).

    Article  Google Scholar 

  221. Carrot-Zhang, J. et al. Comprehensive analysis of genetic ancestry and its molecular correlates in cancer. Cancer Cell 37, 639–654.e6 (2020).

    Article  Google Scholar 

  222. Guda, K. et al. Novel recurrently mutated genes in African American colon cancers. Proc. Natl Acad. Sci. USA 112, 1149–1154 (2015).

    Article  Google Scholar 

  223. Huang, F. W. et al. Exome sequencing of African–American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov. 7, 973–983 (2017).

    Article  Google Scholar 

  224. Pitt, J. J. et al. Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features. Nat. Commun. 9, 4181 (2018).

    Article  Google Scholar 

  225. Guerrero, S. et al. Analysis of racial/ethnic representation in select basic and applied cancer research studies. Sci. Rep. 8, 13978 (2018).

    Article  Google Scholar 

  226. Moore, E., Allen, J. B., Mulligan, C. J. & Wayne, E. C. Ancestry of cells must be considered in bioengineering. Nat. Rev. Mater. 7, 2–4 (2022).

    Article  Google Scholar 

  227. Walker, S. A. et al. Education and outreach in physical sciences in oncology. Trends Cancer 7, 3–9 (2021).

    Article  Google Scholar 

  228. Riter, R. N. & Weiss, R. S. Connecting students with patients and survivors to enhance cancer research training. Cancer Res. 79, 4011–4014 (2019).

    Article  Google Scholar 

  229. Abuali, I., Patel, S., Kiel, L., Meza, K. & Florez, N. Disparities in cancer care — a call to action. Cancer Cell 41, 1–4 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Cancer Institute through the Center on the Physics of Cancer Metabolism (1U54CA210184) and the National Science Foundation through the National Nanotechnology Coordinated Infrastructure Program (NNCI-2025233) and the Graduate Research Fellowship Program (DGE-1650441 to G.F.B. and A.A.S). Moreover, C.F. acknowledges support by a Rosalind Franklin Fellowship from the Max Planck Institute for the Science of Light. The authors apologize that not all relevant work could be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

G.F.B., A.A.S. and C.F. contributed to the conceptualization, writing, revision and figure design of the article. R.N.R. wrote the text and contributed his expertise regarding community engagement in the training of cancer scientists.

Corresponding author

Correspondence to Claudia Fischbach.

Ethics declarations

Competing interest

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Eliza Fong, Johanna Ivaska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Clinical Trials Network: https://nctnbanks.cancer.gov/

Physical Sciences and Oncology Network: https://physics.cancer.gov/

The Cancer Genome Atlas: https://portal.gdc.cancer.gov/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beeghly, G.F., Shimpi, A.A., Riter, R.N. et al. Measuring and modelling tumour heterogeneity across scales. Nat Rev Bioeng 1, 712–730 (2023). https://doi.org/10.1038/s44222-023-00087-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00087-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer