Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of tumour myeloid cells

Abstract

Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils — termed ‘myeloid-derived suppressor cells’ — and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Points of potential therapeutic intervention to modify tumour myeloid cells.
Fig. 2: Influence of selected myeloid cell targeted therapies on myeloid cells and the TME.
Fig. 3: Selected therapeutic strategies to reprogramme or stimulate antitumour macrophage function.
Fig. 4: Myeloid cell-mediated therapy resistance in the context of the broader tumour immune landscape.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cassetta, L. et al. Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol. Immunother. 68, 687–697 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson, A., Han, C. Z., Glass, C. K. & Pollard, J. W. Monocyte regulation in homeostasis and malignancy. Trends Immunol. 42, 104–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Highfill, S. L. et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl Med. 6, 237ra267 (2014).

    Article  Google Scholar 

  16. Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid cell-targeted therapies for solid tumours. Nat. Rev. Immunol. 23, 106–120 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Veglia, F. & Gabrilovich, D. I. Dendritic cells in cancer: the role revisited. Curr. Opin. Immunol. 45, 43–51 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ai, L. et al. Prognostic role of myeloid-derived suppressor cells in cancers: a systematic review and meta-analysis. BMC Cancer 18, 1220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, X., Fu, X., Li, T. & Yan, H. The prognostic value of myeloid derived suppressor cell level in hepatocellular carcinoma: a systematic review and meta-analysis. PLoS ONE 14, e0225327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen, H. et al. Prognostic value of tumor-associated macrophages in clear cell renal cell carcinoma: a systematic review and meta-analysis. Front. Oncol. 11, 657318 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, J. et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis. Int. J. Colorectal Dis. 35, 1203–1210 (2020).

    Article  PubMed  Google Scholar 

  23. Chen, Y. L. Prognostic significance of tumor-associated macrophages in patients with nasopharyngeal carcinoma: a meta-analysis. Medicine 99, e21999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, L. et al. Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57, 829–839 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Soncin, I. et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat. Commun. 9, 582 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Popivanova, B. K. et al. Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res. 69, 7884–7892 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Candido, J. B. et al. CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23, 1448–1460 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nywening, T. M. et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67, 1112–1123 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Andersen, B. M. et al. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat. Rev. Cancer 21, 786–802 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, A. L. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76, 5671–5682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yan, D. et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene 36, 6049–6058 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stafford, J. H. et al. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol. 18, 797–806 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Flores-Toro, J. A. et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc. Natl Acad. Sci. USA 117, 1129–1138 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Gangoso, E. et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184, 2454–2470.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rogic, A. et al. High endogenous CCL2 expression promotes the aggressive phenotype of human inflammatory breast cancer. Nat. Commun. 12, 6889 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kitamura, T. et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J. Exp. Med. 212, 1043–1059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, R. Y. et al. Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. J. Exp. Med. 217, e20191820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tu, M. M. et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun. Biol. 3, 720 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salvagno, C. et al. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat. Cell Biol. 21, 511–521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mehta, A. K. et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2, 66–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Heath, O. et al. Chemotherapy induces tumor-associated macrophages that aid adaptive immune responses in ovarian cancer. Cancer Immunol. Res. 9, 665–681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stromnes, I. M. et al. Differential effects of depleting versus programming tumor-associated macrophages on engineered T cells in pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 7, 977–989 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez-Garcia, A. et al. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat. Commun. 12, 877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anderson, K. G. et al. Engineered adoptive T-cell therapy prolongs survival in a preclinical model of advanced-stage ovarian cancer. Cancer Immunol. Res. 7, 1412–1425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ao, J. Y. et al. Colony-stimulating factor 1 receptor blockade inhibits tumor growth by altering the polarization of tumor-associated macrophages in hepatocellular carcinoma. Mol. Cancer Ther. 16, 1544–1554 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Mantovani, A., Marchesi, F., Jaillon, S., Garlanda, C. & Allavena, P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol. Immunol. 18, 566–578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muller, A., Brandenburg, S., Turkowski, K., Muller, S. & Vajkoczy, P. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int. J. Cancer 137, 278–288 (2015).

    Article  PubMed  Google Scholar 

  54. Loyher, P. L. et al. Macrophages of distinct origins contribute to tumor development in the lung. J. Exp. Med. 215, 2536–2553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Etzerodt, A. et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J. Exp. Med. 217, e20191869 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klemm, F. et al. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nat. Cancer 2, 1086–1101 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Su, X. et al. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J. Clin. Invest. 131, e145296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boyer, S. M. et al. Multi-omic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GMCSF-PI3K pathway. eLife 11, e73796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kumar, V. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32, 654–668.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gyori, D. et al. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight 3, e120631 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Santamaria-Barria, J. A. et al. Csf1r or Mer inhibition delays liver regeneration via suppression of Kupffer cells. PLoS ONE 14, e0216275 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pradel, L. P. et al. Macrophage susceptibility to emactuzumab (RG7155) treatment. Mol. Cancer Ther. 15, 3077–3086 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Papadopoulos, K. P. et al. First-in-human study of AMG 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clin. Cancer Res. 23, 5703–5710 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Autio, K. A. et al. Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: a phase I study. Clin. Cancer Res. 26, 5609–5620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weiss, S. A. et al. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non-small cell lung cancer resistant to anti-PD-1/PD-L1. Clin. Cancer Res. 27, 4757–4767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuemmel, S. et al. A randomized phase II study of anti-CSF1 monoclonal antibody lacnotuzumab (MCS110) combined with gemcitabine and carboplatin in advanced triple-negative breast cancer. Clin. Cancer Res. 28, 106–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Bendell, J. C. et al. A phase 1 study of ARRY-382, an oral inhibitor of colony-stimulating factor-1 receptor (CSF1R), in patients with advanced or metastatic cancers. Mol. Cancer Ther. 12, A252 (2013).

    Article  Google Scholar 

  70. Strachan, D. C. et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology 2, e26968 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Patwardhan, P. P. et al. Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clin. Cancer Res. 20, 3146–3158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Genovese, M. C. et al. Results from a phase IIA parallel group study of JNJ-40346527, an oral CSF-1R inhibitor, in patients with active rheumatoid arthritis despite disease-modifying antirheumatic drug therapy. J. Rheumatol. 42, 1752–1760 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Tap, W. D. et al. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet 394, 478–487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Johnson, M. et al. ARRY-382 in combination with pembrolizumab in patients with advanced solid tumors: results from a phase 1b/2 study. Clin. Cancer Res. 28, 2517–2526 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01596751 (2020).

  77. Falchook, G. S. et al. A phase 1a/1b trial of CSF-1R inhibitor LY3022855 in combination with durvalumab or tremelimumab in patients with advanced solid tumors. Invest. New Drugs 39, 1284–1297 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Bissinger, S. et al. Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci. Transl Med. 13, eabd4550 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Laubli, H. et al. The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models. Cancer Immunol. Immunother. 67, 815–824 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Bhardwaj, N. et al. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nat. Cancer 1, 1204–1217 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin, J. H. et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. 217, e20190673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cherney, R. J. et al. BMS-813160: a potent CCR2 and CCR5 dual antagonist selected as a clinical candidate. ACS Med. Chem. Lett. 12, 1753–1758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Walens, A. et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 8, e43653 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04123379 (2022).

  87. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jurcevic, S. et al. The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions. Br. J. Clin. Pharmacol. 80, 1324–1336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chao, T., Furth, E. E. & Vonderheide, R. H. CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 4, 968–982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Siolas, D., Vucic, E., Kurz, E., Hajdu, C. & Bar-Sagi, D. Gain-of-function p53(R172H) mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy. Cell Rep. 36, 109578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Y. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med. 217, e20190354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jamieson, T. et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. Invest. 122, 3127–3144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liao, W. et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35, 559–572.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, D., Sun, H., Wei, J., Cen, B. & DuBois, R. N. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77, 3655–3665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou, S. L. et al. A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology 70, 1214–1230 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. van der Windt, D. J. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 68, 1347–1360 (2018).

    Article  PubMed  Google Scholar 

  102. Chang, C. J. et al. Targeting tumor-infiltrating Ly6G+ myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int. J. Cancer 142, 1878–1889 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, H. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J. Hepatol. 75, 1271–1283 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Leslie, J. et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 71, 2093–2106 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Greene, S. et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin. Cancer Res. 26, 1420–1431 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Kargl, J. et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4, e130850 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tang, K. H. et al. Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC. Cancer Discov. 12, 47–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Cha, H. R., Lee, J. H. & Ponnazhagan, S. Revisiting immunotherapy: a focus on prostate cancer. Cancer Res. 80, 1615–1623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lopez-Bujanda, Z. A. et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Nat. Cancer 2, 803–818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Harshman, L. C. et al. Impact of baseline serum IL-8 on metastatic hormone-sensitive prostate cancer outcomes in the Phase 3 CHAARTED trial (E3805). Prostate 80, 1429–1437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nuhn, P. et al. Association of pretreatment neutrophil-to-lymphocyte ratio (NLR) and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with first-line docetaxel. BJU Int. 114, E11–E17 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Idorn, M., Kollgaard, T., Kongsted, P., Sengelov, L. & Thor Straten, P. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol. Immunother. 63, 1177–1187 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559, 363–369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Di Mitri, D. et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer. Cell Rep. 28, 2156–2168.e5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03177187 (2022).

  117. El-Kenawi, A. et al. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res. 81, 5477–5490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Masetti, M. et al. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J. Exp. Med. 219, e20210564 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Guthrie, G. J. et al. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit. Rev. Oncol. Hematol. 88, 218–230 (2013).

    Article  PubMed  Google Scholar 

  120. Nicholls, D. J. et al. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist. J. Pharmacol. Exp. Ther. 353, 340–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, J. et al. Targeted deletion of CXCR2 in myeloid cells alters the tumor immune environment to improve antitumor immunity. Cancer Immunol. Res. 9, 200–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Dominguez, C., McCampbell, K. K., David, J. M. & Palena, C. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight 2, e94296 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bilusic, M. et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 7, 240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03689699 (2022).

  125. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04050462 (2022).

  126. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03400332 (2023).

  127. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04572451 (2022).

  128. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02583477 (2019).

  129. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02499328 (2022).

  130. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03161431 (2022).

  131. Goldstein, L. J. et al. A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (fRida). Breast Cancer Res. Treat. 190, 265–275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cui, C. et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell 184, 3163–3177.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Sionov, R. V. et al. Neutrophil cathepsin G and tumor cell RAGE facilitate neutrophil anti-tumor cytotoxicity. Oncoimmunology 8, e1624129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Eruslanov, E. B. et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Invest. 124, 5466–5480 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mysore, V. et al. FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat. Commun. 12, 4791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hou, P. et al. Tumor microenvironment remodeling enables bypass of oncogenic KRAS dependency in pancreatic cancer. Cancer Discov. 10, 1058–1077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen, Y. et al. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39, 548–565.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Samain, R. et al. Pharmacologic normalization of pancreatic cancer-associated fibroblast secretome impairs prometastatic cross-talk with macrophages. Cell Mol. Gastroenterol. Hepatol. 11, 1405–1436 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Carnevalli, L. S. et al. Macrophage activation status rather than repolarization is associated with enhanced checkpoint activity in combination with PI3Kgamma inhibition. Mol. Cancer Ther. 20, 1080–1091 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Proia, T. A. et al. STAT3 antisense oligonucleotide remodels the suppressive tumor microenvironment to enhance immune activation in combination with anti-PD-L1. Clin. Cancer Res. 26, 6335–6349 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Rynkiewicz, N. K. et al. Gbetagamma is a direct regulator of endogenous p101/p110gamma and p84/p110gamma PI3Kgamma complexes in mouse neutrophils. Sci. Signal. 13, eaaz4003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kaneda, M. M. et al. Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 6, 870–885 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Miyazaki, T. et al. Infiltration of CD163-positive macrophages in glioma tissues after treatment with anti-PD-L1 antibody and role of PI3Kgamma inhibitor as a combination therapy with anti-PD-L1 antibody in in vivo model using temozolomide-resistant murine glioma-initiating cells. Brain Tumor Pathol. 37, 41–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Gonzalez-Garcia, A., Sanchez-Ruiz, J., Flores, J. M. & Carrera, A. C. Phosphatidylinositol 3-kinase gamma inhibition ameliorates inflammation and tumor growth in a model of colitis-associated cancer. Gastroenterology 138, 1374–1383 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Winkler, D. G. et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol. 20, 1364–1374 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Stark, A. K. et al. Loss of phosphatidylinositol 3-kinase activity in regulatory T cells leads to neuronal inflammation. J. Immunol. 205, 78–89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sai, J. et al. PI3K inhibition reduces mammary tumor growth and facilitates antitumor immunity and anti-PD1 responses. Clin. Cancer Res. 23, 3371–3384 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Davis, R. J. et al. Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3Kdelta/gamma. Cancer Res. 77, 2607–2619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Han, M. G. et al. PI3Kγδ inhibitor plus radiation enhances the antitumour immune effect of PD-1 blockade in syngenic murine breast cancer and humanised patient-derived xenograft model. Eur. J. Cancer 157, 450–463 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02637531 (2022).

  156. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03980041 (2022).

  157. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03719326 (2022).

  158. Mace, T. A. et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67, 320–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Pore, N. et al. Resistance to durvalumab and durvalumab plus tremelimumab is associated with functional STK11 mutations in patients with non-small cell lung cancer and is reversed by STAT3 knockdown. Cancer Discov. 11, 2828–2845 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03421353 (2022).

  161. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03334617 (2023).

  162. Lourenco, A. R. & Coffer, P. J. A tumor suppressor role for C/EBPalpha in solid tumors: more than fat and blood. Oncogene 36, 5221–5230 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Hashimoto, A. et al. Upregulation of C/EBPalpha inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin. Cancer Res. 27, 5961–5978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04105335 (2022).

  165. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04710641 (2022).

  166. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Orillion, A. et al. Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 23, 5187–5201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gladue, R. P. et al. The CD40 agonist antibody CP-870,893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice. Cancer Immunol. Immunother. 60, 1009–1017 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15, 2719–2732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Padron, L. J. et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 28, 1167–1177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jaynes, J. M. et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci. Transl Med. 12, eaax6337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. La Fleur, L. et al. Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res. 81, 956–967 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Eisinger, S. et al. Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc. Natl Acad. Sci. USA 117, 32005–32016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ring, N. G. et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc. Natl Acad. Sci. USA 114, E10578–E10585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Schmid, M. C. et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat. Commun. 9, 5379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Panni, R. Z. et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci. Transl Med. 11, aau9240 (2019).

    Article  Google Scholar 

  181. Shime, H. et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc. Natl Acad. Sci. USA 109, 2066–2071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shirota, Y., Shirota, H. & Klinman, D. M. Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J. Immunol. 188, 1592–1599 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Zoglmeier, C. et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res. 17, 1765–1775 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Michaelis, K. A. et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 10, 4682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ohkuri, T. et al. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother. 66, 705–716 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, Q. et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat. Commun. 13, 3022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Pan, B. S. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 369, eaba6098 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Chin, E. N. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 369, 993–999 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Leone, R. D. & Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 20, 516–531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Oshima, H. et al. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology 140, 596–607.e7 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Cilenti, F. et al. A PGE2-MEF2A axis enables context-dependent control of inflammatory gene expression. Immunity 54, 1665–1682.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, Y. et al. Combination of EP4 antagonist MF-766 and anti-PD-1 promotes anti-tumor efficacy by modulating both lymphocytes and myeloid cells. Oncoimmunology 10, 1896643 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Albu, D. I. et al. EP4 Antagonism by E7046 diminishes myeloid immunosuppression and synergizes with Treg-reducing IL-2-diphtheria toxin fusion protein in restoring anti-tumor immunity. Oncoimmunology 6, e1338239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04344795 (2023).

  197. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5, 822–834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Steggerda, S. M. et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer 5, 101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Miret, J. J. et al. Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor immunity. J. Immunother. Cancer 7, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Vonwirth, V. et al. Inhibition of arginase 1 liberates potent T cell immunostimulatory activity of human neutrophil granulocytes. Front. Immunol. 11, 617699 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Allard, B., Allard, D., Buisseret, L. & Stagg, J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 611–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Bao, X. & Xie, L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. J. Exp. Clin. Cancer Res. 41, 222 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cekic, C., Day, Y. J., Sag, D. & Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 74, 7250–7259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Awad, R. M., De Vlaeminck, Y., Maebe, J., Goyvaerts, C. & Breckpot, K. Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Front. Immunol. 9, 1977 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Mitchell, T. C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J. Clin. Oncol. 36, 3223–3230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zakharia, Y. et al. Phase II trial of the IDO pathway inhibitor indoximod plus pembrolizumab for the treatment of patients with advanced melanoma. J. Immunother Cancer 9, e002057 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Mariotti, V. et al. Effect of taxane chemotherapy with or without indoximod in metastatic breast cancer: a randomized clinical trial. JAMA Oncol. 7, 61–69 (2021).

    Article  PubMed  Google Scholar 

  211. Odunsi, K. et al. Metabolic adaptation of ovarian tumors in patients treated with an IDO1 inhibitor constrains antitumor immune responses. Sci. Transl Med. 14, eabg8402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bellomo, G. et al. Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut 71, 2284–2299 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Coffelt, S. B. et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Xiao, Y. et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 39, 423–437.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Wang, X. et al. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat. Commun. 12, 174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Teijeira, A. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Teijeira, A. et al. IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy. Clin. Cancer Res. 27, 2383–2393 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Yang, C. et al. Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis. J. Immunother Cancer 9, e002875 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Deng, J. et al. DDR1-induced neutrophil extracellular traps drive pancreatic cancer metastasis. JCI Insight 6, e146133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Thibault, B. et al. Pancreatic cancer intrinsic PI3Kalpha activity accelerates metastasis and rewires macrophage component. EMBO Mol. Med. 13, e13502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kaczanowska, S. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 184, 2033–2052.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Veglia, F. et al. Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J. Exp. Med. 218, e20201803 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Liudahl, S. M. et al. Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome. Cancer Discov. 11, 2014–2031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Gonzalez, H. et al. Cellular architecture of human brain metastases. Cell 185, 729–745.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hakimi, A. A. et al. Transcriptomic profiling of the tumor microenvironment reveals distinct subgroups of clear cell renal cell cancer: data from a randomized phase III trial. Cancer Discov. 9, 510–525 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Katzenelenbogen, Y. et al. Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Watson, M. J. & Delgoffe, G. M. Fighting in a wasteland: deleterious metabolites and antitumor immunity. J. Clin. Invest. 132, e148549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhang, H. et al. Glycoengineered anti-CD39 promotes anticancer responses by depleting suppressive cells and inhibiting angiogenesis in tumor models. J. Clin. Invest. 132, e157431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Vick, S. C., Kolupaev, O. V., Perou, C. M. & Serody, J. S. Anti-PD-1 checkpoint therapy can promote the function and survival of regulatory T cells. J. Immunol. 207, 2598–2607 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Biton, J. et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin. Cancer Res. 24, 5710–5723 (2018).

    Article  CAS  PubMed  Google Scholar 

  241. Ricciuti, B. et al. Diminished efficacy of programmed death-(ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status. J. Thorac. Oncol. 17, 399–410 (2021).

    Article  PubMed  Google Scholar 

  242. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  243. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Han, G. et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun. 12, 5606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gutiontov, S. I. et al. CDKN2A loss-of-function predicts immunotherapy resistance in non-small cell lung cancer. Sci. Rep. 11, 20059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lu, C. et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell 39, 96–108.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Kitajima, S. et al. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 9, 34–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  248. Torrejon, D. Y. et al. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov. 10, 1140–1157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Grasso, C. S. et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8, 730–749 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Noel, M. et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugs 38, 800–811 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Sullivan, R. J. et al. Initial results from first-in-human study of IPI-549, a tumor macrophage-targeting agent, combined with nivolumab in advanced solid tumors. J. Clin. Oncol. 36, 3013–3013 (2018).

    Article  Google Scholar 

  255. Tcyganov, E. N. et al. Distinct mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and cancer. J. Clin. Invest. 131, e145971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kwak, T. et al. Distinct populations of immune-suppressive macrophages differentiate from monocytic myeloid-derived suppressor cells in cancer. Cell Rep. 33, 108571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Mastio, J. et al. Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. J. Exp. Med. 216, 2150–2169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Murray for technical assistance and J. Blando for providing the immunohistochemistry images shown in Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon T. Barry.

Ethics declarations

Competing interests

S.T.B. and D.I.G. are AstraZeneca employees and shareholders. O.J.S. has received research funding from AstraZeneca, Boehringer Ingelheim, Novartis and Cancer Research Horizons. J.P.M. has received research funding from AstraZeneca and UCB Pharma. A.D.C. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Chromosome band 9p21

A region of chromosome 9 that in humans encodes the genes CDKN2A, CDKN2B and MTAP and the genes encoding interferon-α and interferon-β. Deletions or mutations of this region occur in many diseases.

Hepatic Kupffer cells

Specialist macrophages in the liver that break down red blood cells as one of their major functions.

Human leukocyte antigen

Part of the major histocompatibility complex antigen presentation complex in humans that is required to present antigens to T cells.

Neutropenia

A reduction in the number of neutrophils in the peripheral blood, common following chemotherapy. Severe reductions in the number of peripheral neutrophils render patients susceptible to infection or febrile neutropenia and is an adverse toxicity.

Phosphatase and tensin homologue

(PTEN). A lipid phosphatase and tumour suppressor that regulates phosphoinositide 3-kinase (PI3K)–AKT pathway activation. PTEN is genetically mutated, deleted or shows reduced expression in many tumour types.

Prostaglandins

Bioactive lipids produced from arachidonic acid that activate multiple G protein-coupled receptors and are produced during inflammation, tissue damage and in the tumour microenvironment, affecting multiple cell types.

STING

A critical effector of the DNA sensing pathway that triggers inflammation-associated responses upon DNA damage.

STK11

The gene encoding the tumour suppressor LKB1, controlling AMPK activation; expression is lost in many tumour types, including lung cancer, rendering tumours refractory to many current treatments associated with accumulation of myeloid cells.

Tenosynovial giant cell tumours

Rare benign tumours driven by overexpression of colony-stimulating factor 1 (CSF1), where CSF1 receptor (CSF1R)-expressing cells such as macrophages accumulate in the tendon sheath and tissue surrounding joints.

β2-Microglobulin

Part of the antigen presentation machinery.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barry, S.T., Gabrilovich, D.I., Sansom, O.J. et al. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 23, 216–237 (2023). https://doi.org/10.1038/s41568-022-00546-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00546-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer