Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies

Abstract

Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Telomerase-mediated telomere lengthening and the therapeutics that inhibit this process.
Fig. 2: Chromatin remodelling creates an ALT permissive state.
Fig. 3: Resolution of replication stress at telomeres using ALT.
Fig. 4: Multiple DNA repair pathways are engaged at telomeres using ALT.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). This paper identifies the key hallmarks of cancer, one of which is infinite replicative potential that can be enabled by activation of a TMM.

    Article  CAS  PubMed  Google Scholar 

  2. Guterres, A. N. & Villanueva, J. Targeting telomerase for cancer therapy. Oncogene 39, 5811–5824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rousseau, P. & Autexier, C. Telomere biology: rationale for diagnostics and therapeutics in cancer. RNA Biol. 12, 1078–1082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meyne, J., Ratliff, R. L. & Moyzis, R. K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl Acad. Sci. USA 86, 7049–7053 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Larrivee, M., LeBel, C. & Wellinger, R. J. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev. 18, 1391–1396 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Makarov, V. L., Hirose, Y. & Langmore, J. P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D. & Shay, J. W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erdel, F. et al. Telomere recognition and assembly mechanism of mammalian shelterin. Cell Rep. 18, 41–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Van Ly, D. et al. Telomere loop dynamics in chromosome end protection. Mol. Cell 71, 510–525.e6 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Tomaska, L., Nosek, J., Kar, A., Willcox, S. & Griffith, J. D. A new view of the T-loop junction: implications for self-primed telomere extension, expansion of disease-related nucleotide repeat blocks, and telomere evolution. Front. Genet. https://doi.org/10.3389/fgene.2019.00792 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ghanim, G. E. et al. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 593, 449–453 (2021). This paper shows sub-4 Å resolution of the human telomerase holoenzyme bound to telomeric DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Q., Kim, N.-K. & Feigon, J. Architecture of human telomerase RNA. Proc. Natl Acad. Sci. USA 108, 20325–20332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, J.-M. & Zou, L. Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci. 10, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sobinoff, A. P. & Pickett, H. A. Mechanisms that drive telomere maintenance and recombination in human cancers. Curr. Opin. Genet. Dev. 60, 25–30 (2020). This paper provides an in-depth review of the current understanding of the ALT mechanism.

    Article  CAS  PubMed  Google Scholar 

  19. Jafri, M. A., Ansari, S. A., Alqahtani, M. H. & Shay, J. W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 8, 69 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Vulliamy, T. et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc. Natl Acad. Sci. USA 105, 8073–8078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pogacic, V., Dragon, F. & Filipowicz, W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell Biol. 20, 9028–9040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cerone, M. A., Ward, R. J., Londono-Vallejo, J. A. & Autexier, C. Telomerase RNA mutated in autosomal dyskeratosis congenita reconstitutes a weakly active telomerase enzyme defective in telomere elongation. Cell Cycle 4, 585–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Zhong, F. L. et al. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150, 481–494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, L. Y., Redon, S. & Lingner, J. The human CST complex is a terminator of telomerase activity. Nature 488, 540–544 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Latrick, C. M. & Cech, T. R. POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J. 29, 924–933 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelleher, C., Kurth, I. & Lingner, J. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol. Cell Biol. 25, 808–818 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ye, J. Z. & de Lange, T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat. Genet. 36, 618–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, S. S., Bohrson, C., Pike, A. M., Wheelan, S. J. & Greider, C. W. ATM kinase is required for telomere elongation in mouse and human cells. Cell Rep. 13, 1623–1632 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leteurtre, F., Li, X., Gluckman, E. & Carosella, E. D. Telomerase activity during the cell cycle and in gamma-irradiated hematopoietic cells. Leukemia 11, 1681–1689 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt, J. C., Zaug, A. J. & Cech, T. R. Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell 166, 1188–1197.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarek, G., Vannier, J. B., Panier, S., Petrini, J. H. J. & Boulton, S. J. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol. Cell 57, 622–635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, Y. et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138, 463–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 49, 349–357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hiyama, E. & Hiyama, K. Telomere and telomerase in stem cells. Br. J. Cancer 96, 1020–1024 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterisation and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, F., Cheng, D., Wang, S. & Zhu, J. Human specific regulation of the telomerase reverse transcriptase gene. Genes 7, 30 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  39. Sieverling, L. et al. Genomic footprints of activated telomere maintenance mechanisms in cancer. Nat. Commun. 11, 733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Nonneville, A. & Reddel, R. R. Alternative lengthening of telomeres is not synonymous with mutations in ATRX/DAXX. Nat. Commun. 12, 1552 (2021). This paper provides a comprehensive analysis of the prevalence of ATRX and/or DAXX mutations across cancer types.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Wang, S., Hu, C. & Zhu, J. Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18, 669–677 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, S. & Zhu, J. The hTERT gene is embedded in a nuclease-resistant chromatin domain. J. Biol. Chem. 279, 55401–55410 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Stern, J. L., Theodorescu, D., Vogelstein, B., Papadopoulos, N. & Cech, T. R. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev. 29, 2219–2224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Episkopou, H. et al. Alternative lengthening of telomeres is characterised by reduced compaction of telomeric chromatin. Nucleic Acids Res. 42, 4391–4405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Napier, C. E. et al. ATRX represses alternative lengthening of telomeres. Oncotarget 6, 16543–16558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    Article  PubMed  Google Scholar 

  47. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localisation at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, F. et al. ATRX loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalisation. EMBO J. 38, e96659 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Lee, M. et al. Telomere sequence content can be used to determine ALT activity in tumours. Nucleic Acids Res. 46, 4903–4918 (2018). This study provides the first demonstration that telomere variant repeat content can be used to accurately identify ALT-positive tumours from whole-genome sequencing data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gauchier, M. et al. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Sci. Adv. 5, eaav3673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conomos, D., Reddel, R. R. & Pickett, H. A. NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat. Struct. Mol. Biol. 21, 760–770 (2014). This paper demonstrates that NuRD–ZNF827 is recruited exclusively to ALT-positive telomeres, where it functions to remodel telomeric chromatin, creating a recombination-permissive environment that enables ALT activity.

    Article  CAS  PubMed  Google Scholar 

  53. Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vannier, J.-B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I. R., Ding, H. & Boulton, S. J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Cesare, A. J. et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 16, 1244–1251 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Déjardin, J. & Kingston, R. E. Purification of proteins associated with specific genomic loci. Cell 136, 175–186 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Garcia-Exposito, L. et al. Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres. Cell Rep. 17, 1858–1871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Conomos, D. et al. Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. J. Cell Biol. 199, 893–906 (2012). This study shows that telomere variant repeats become interspersed throughout ALT-positive telomeres, thereby disrupting shelterin binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cox, K. E., Maréchal, A. & Flynn, R. L. SMARCAL1 resolves replication stress at ALT telomeres. Cell Rep. 14, 1032–1040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu, R. et al. The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT). Nat. Commun. 10, 2252 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Root, H. et al. FANCD2 limits BLM-dependent telomere instability in the alternative lengthening of telomeres pathway. Hum. Mol. Genet. 25, 3255–3268 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Silva, B. et al. FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nat. Commun. 10, 2253 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Pan, X., Ahmed, N., Kong, J. & Zhang, D. Breaking the end: target the replication stress response at the ALT telomeres for cancer therapy. Mol. Cell. Oncol. 4, e1360978 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Pan, X. et al. FANCM suppresses DNA replication stress at ALT telomeres by disrupting TERRA R-loops. Sci. Rep. 9, 19110 (2019). Along with Lu et al.61 and Silva et al.63, this study demonstrates the role of the FANCM–BTR complex in alleviating replication stress at ALT-positive telomeres and provides the first evidence for the FANCM–BTR interaction as a novel drug target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pan, X. et al. FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres. Proc. Natl Acad. Sci. USA 114, E5940–E5949 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Betous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Poole, L. A. et al. SMARCAL1 maintains telomere integrity during DNA replication. Proc. Natl Acad. Sci. USA 112, 14864–14869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dilley, R. L. et al. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 539, 54–58 (2016). This paper provides a definition of the mechanism of break-induced telomere synthesis at ALT-positive telomeres, and its reliance on the unique RFC–PCNA–Polδ replisome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nimonkar, A. V., Özsoy, A. Z., Genschel, J., Modrich, P. & Kowalczykowski, S. C. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl Acad. Sci. USA 105, 16906–16911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nimonkar, A. V. et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, J.-M., Yadav, T., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres through two distinct break-induced replication pathways. Cell Rep. 26, 955–968.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Min, J., Wright, W. E. & Shay, J. W. Alternative lengthening of telomeres mediated by mitotic DNA synthesis engages break-induced replication processes. Mol. Cell. Biol. 37, e00226-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Min, J., Wright, W. E. & Shay, J. W. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev. 33, 814–827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verma, P. et al. RAD52 and SLX4 act nonepistatically to ensure telomere stability during alternative telomere lengthening. Genes Dev. 33, 221–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sobinoff, A. P. & Pickett, H. A. Alternative lengthening of telomeres: DNA repair pathways converge. Trends Genet. 33, 921–932 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Sobinoff, A. P. et al. BLM and SLX4 play opposing roles in recombination-dependent replication at human telomeres. EMBO J. 36, 2907–2919 (2017). This study demonstrates that BLM and SLX4 have opposing functions at ALT-positive telomeres, with BLM promoting telomere extension and SLX4 counteracting telomere extension by inducing telomere exchange events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, L. & Hickson, I. D. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003). This paper demonstrates that BLM works together with TOP3A to promote the dissolution of Holliday junctions.

    Article  CAS  PubMed  Google Scholar 

  80. Svendsen, J. M. et al. Mammalian BTBD12/SLX4 assembles a holliday junction resolvase and is required for DNA repair. Cell 138, 63–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Müller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chung, I., Leonhardt, H. & Rippe, K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J. Cell Sci. 124, 3603–3618 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Henson, J. D. et al. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat. Biotechnol. 27, 1181–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, J. M., Genois, M. M., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Mol. Cell 81, 1027–1042.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lauer, N. K. et al. Absence of telomerase activity in malignant bone tumors and soft-tissue sarcomas. Sarcoma 6, 43–46 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Odago, F. O. & Gerson, S. L. Telomerase inhibition and telomere erosion: a two-pronged strategy in cancer therapy. Trends Pharmacol. Sci. 24, 328–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Mo, Y. Q. et al. Simultaneous targeting of telomeres and telomerase as a cancer therapeutic approach. Cancer Res. 63, 579–585 (2003).

    CAS  PubMed  Google Scholar 

  88. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Hernandez-Sanchez, W. et al. A non-natural nucleotide uses a specific pocket to selectively inhibit telomerase activity. PLoS Biol. 17, e3000204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gryaznov, S. et al. Telomerase inhibitors- oligonucleotide phosphoramidates as potential therapeutic agents. Nucleosides Nucleotides Nucleic Acids 20, 401–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, Z., Monia, B. P. & Corey, D. R. Telomerase inhibition, telomere shortening, and decreased cell proliferation by cell permeable 2′-O-methoxyethyl oligonucleotides. J. Med. Chem. 45, 5423–5425 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Herbert, B. S., Pongracz, K., Shay, J. W. & Gryaznov, S. M. Oligonucleotide N3′–>P5′ phosphoramidates as efficient telomerase inhibitors. Oncogene 21, 638–642 (2002).

    Article  PubMed  Google Scholar 

  94. Pitts, A. E. & Corey, D. R. Inhibition of human telomerase by 2′-O-methyl-RNA. Proc. Natl Acad. Sci. USA 95, 11549–11554 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schrank, Z. et al. Oligonucleotides targeting telomeres and telomerase in cancer. Molecules https://doi.org/10.3390/molecules23092267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Eckburg, A., Dein, J., Berei, J., Schrank, Z. & Puri, N. Oligonucleotides and microRNAs targeting telomerase subunits in cancer therapy. Cancers https://doi.org/10.3390/cancers12092337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ferrandon, S. et al. Telomerase inhibition improves tumor response to radiotherapy in a murine orthotopic model of human glioblastoma. Mol. Cancer 14, 134 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Marian, C. O. et al. The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth. Clin. Cancer Res. 16, 154–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frink, R. E. et al. Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner. Oncotarget 7, 31639–31651 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Salloum, R. et al. A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: a pediatric brain tumor consortium study. J. Neurooncol. 129, 443–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barwe, S. P., Huang, F., Kolb, E. A. & Gopalakrishnapillai, A. Imetelstat significantly reduces leukemia stem cells in patient-derived xenograft models of pediatric AML. Blood 138, 3352 (2021).

    Article  Google Scholar 

  102. Steensma, D. P. et al. Imetelstat achieves meaningful and durable transfusion independence in high transfusion-burden patients with lower-risk myelodysplastic syndromes in a phase II study. J. Clin. Oncol. 39, 48–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Tefferi, A. et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N. Engl. J. Med. 373, 908–919 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Baerlocher, G. M. et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N. Engl. J. Med. 373, 920–928 (2015). This study demonstrates the success of imetelstat in treating patients with thrombocythaemia.

    Article  CAS  PubMed  Google Scholar 

  105. Dikmen, Z. G. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 7866–7873 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Saygin, C. & Carraway, H. E. Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev. 48, 100791 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Kuykendall, A. T. et al. Favorable overall survival with imetelstat in relapsed/refractory myelofibrosis patients compared with real-world data. Ann. Hematol. 101, 139–146 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, X. et al. Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv. 2, 2378–2388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thompson, P. A. et al. A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase I Consortium Study (ADVL1112). Clin. Cancer Res. 19, 6578–6584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chiappori, A. A. et al. A randomised phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann. Oncol. 26, 354–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Gomez, D. E., Armando, R. G. & Alonso, D. F. AZT as a telomerase inhibitor. Front. Oncol. 2, 113 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. Leão, R. et al. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J. Biomed. Sci. 25, 22 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Peng, Y., Mian, I. S. & Lue, N. F. Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol. Cell 7, 1201–1211 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Sanford, S. L., Welfer, G. A., Freudenthal, B. D. & Opresko, P. L. Mechanisms of telomerase inhibition by oxidised and therapeutic dNTPs. Nat. Commun. 11, 5288 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mitsuya, H. et al. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl Acad. Sci. USA 82, 7096–7100 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Strahl, C. & Blackburn, E. H. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalised human cell lines. Mol. Cell Biol. 16, 53–65 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Strahl, C. & Blackburn, E. H. The effects of nucleoside analogs on telomerase and telomeres in Tetrahymena. Nucleic Acids Res. 22, 893–900 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, Y., Gallagher-Jones, M., Sušac, L., Song, H. & Feigon, J. A structurally conserved human and Tetrahymena telomerase catalytic core. Proc. Natl Acad. Sci. USA 117, 31078–31087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Datta, A. et al. Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood 108, 1021–1029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Langford, A., Ruf, B., Kunze, R., Pohle, H. D. & Reichart, P. Regression of oral Kaposi’s sarcoma in a case of AIDS on Zidovudine (AZT). Br. J. Dermatol. 120, 709–713 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, R. K. et al. Azidothymidine and interferon-α induce apoptosis in herpesvirus-associated lymphomas1. Cancer Res. 59, 5514–5520 (1999).

    CAS  PubMed  Google Scholar 

  122. Wang, H., Zhou, J., He, Q., Dong, Y. & Liu, Y. Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer. Mol. Med. Rep. 15, 4055–4060 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rha, S. Y. et al. Effect of telomere and telomerase interactive agents on human tumor and normal cell lines. Clin. Cancer Res. 6, 987–993 (2000).

    CAS  PubMed  Google Scholar 

  124. Sengupta, S. et al. Induced telomere damage to treat telomerase expressing therapy-resistant pediatric brain tumors. Mol. Cancer Ther. 17, 1504–1514 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Mender, I., Gryaznov, S., Dikmen, Z. G., Wright, W. E. & Shay, J. W. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2′-deoxyguanosine. Cancer Discov. 5, 82–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Damm, K. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20, 6958–6968 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rao, Y. K., Kao, T. Y., Wu, M. F., Ko, J. L. & Tzeng, Y. M. Identification of small molecule inhibitors of telomerase activity through transcriptional regulation of hTERT and calcium induction pathway in human lung adenocarcinoma A549 cells. Bioorg. Med. Chem. 18, 6987–6994 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Yang, Y. L. et al. Histone deacetylase inhibitor AR42 regulates telomerase activity in human glioma cells via an Akt-dependent mechanism. Biochem. Biophys. Res. Commun. 435, 107–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Li, Y. et al. A small molecule compound IX inhibits telomere and attenuates oncogenesis of drug-resistant leukemia cells. FASEB J. 34, 8843–8857 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Bryan, C. et al. Structural basis of telomerase inhibition by the highly specific BIBR1532. Structure 23, 1934–1942 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pascolo, E. et al. Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J. Biol. Chem. 277, 15566–15572 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. El-Daly, H. et al. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 105, 1742–1749 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Giunco, S. et al. Anti-proliferative and pro-apoptotic effects of short-term inhibition of telomerase in vivo and in human malignant B cells xenografted in zebrafish. Cancers 12, 2052 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  134. Pourbagheri-Sigaroodi, A. et al. Contributory role of microRNAs in anti-cancer effects of small molecule inhibitor of telomerase (BIBR1532) on acute promyelocytic leukemia cell line. Eur. J. Pharmacol. 846, 49–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Kong, W. et al. Knockdown of hTERT and treatment with BIBR1532 inhibit cell proliferation and invasion in endometrial cancer cells. J. Cancer 6, 1337–1345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kusoglu, A., Goker Bagca, B., Ozates Ay, N. P., Gunduz, C. & Biray Avci, C. Telomerase inhibition regulates EMT mechanism in breast cancer stem cells. Gene 759, 145001 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Biray Avci, C. et al. Effects of telomerase inhibitor on epigenetic chromatin modification enzymes in malignancies. J. Cell. Biochem. 119, 9817–9824 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Doğan, F. et al. Investigation of the effect of telomerase inhibitor BIBR1532 on breast cancer and breast cancer stem cells. J. Cell. Biochem. https://doi.org/10.1002/jcb.27089 (2018).

    Article  PubMed  Google Scholar 

  139. Ward, R. J. & Autexier, C. Pharmacological telomerase inhibition can sensitise drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol. Pharmacol. 68, 779–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Seimiya, H. et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-1991. Mol. Cancer Ther. 1, 657–665 (2002).

    CAS  PubMed  Google Scholar 

  141. Fang, M. Z. et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563–7570 (2003).

    CAS  PubMed  Google Scholar 

  142. Berletch, J. B. et al. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J. Cell Biochem. 103, 509–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Naasani, I., Seimiya, H. & Tsuruo, T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun. 249, 391–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Gurung, R. L., Lim, S. N., Low, G. K. & Hande, M. P. MST-312 Alters telomere dynamics, gene expression profiles and growth in human breast cancer cells. J. Nutrigenet. Nutrigenomics 7, 283–298 (2014).

    CAS  PubMed  Google Scholar 

  145. Fujiwara, C. et al. Cell-based chemical fingerprinting identifies telomeres and lamin A as modifiers of DNA damage response in cancer cells. Sci. Rep. 8, 14827 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  146. Andrade da Mota, T. H. et al. Effects of in vitro short- and long-term treatment with telomerase inhibitor in U-251 glioma cells. Tumour Biol. 43, 327–340 (2021).

    Article  PubMed  Google Scholar 

  147. Ghasemimehr, N., Farsinejad, A., Mirzaee Khalilabadi, R., Yazdani, Z. & Fatemi, A. The telomerase inhibitor MST-312 synergistically enhances the apoptotic effect of doxorubicin in pre-B acute lymphoblastic leukemia cells. Biomed. Pharmacother. 106, 1742–1750 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Zhou, C., Gehrig, P. A., Whang, Y. E. & Boggess, J. F. Rapamycin inhibits telomerase activity by decreasing the hTERT mRNA level in endometrial cancer cells. Mol. Cancer Ther. 2, 789–795 (2003).

    CAS  PubMed  Google Scholar 

  149. Betori, R. C. et al. Targeted covalent inhibition of telomerase. ACS Chem. Biol. 15, 706–717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, N. et al. Bufalin inhibits hTERT expression and colorectal cancer cell growth by targeting CPSF4. Cell Physiol. Biochem. 40, 1559–1569 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Mizushina, Y., Takeuchi, T., Sugawara, F. & Yoshida, H. Anti-cancer targeting telomerase inhibitors: β-rubromycin and oleic acid. Mini Rev. Med. Chem. 12, 1135–1143 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Ueno, T. et al. Inhibition of human telomerase by rubromycins: implication of spiroketal system of the compounds as an active moiety. Biochemistry 39, 5995–6002 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Ellingsen, E. B., Mangsbo, S. M., Hovig, E. & Gaudernack, G. Telomerase as a target for therapeutic cancer vaccines and considerations for optimizing their clinical potential. Front. Immunol. 12, 682492 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Negrini, S., De Palma, R. & Filaci, G. Anti-cancer immunotherapies targeting telomerase. Cancers 12, 2260 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  155. Dosset, M., Castro, A., Carter, H. & Zanetti, M. Telomerase and CD4 T cell immunity in cancer. Cancers 12, 1687 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  156. Bernhardt, S. L. et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br. J. Cancer 95, 1474–1482 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schlapbach, C., Yerly, D., Daubner, B., Yawalkar, N. & Hunger, R. E. Telomerase-specific GV1001 peptide vaccination fails to induce objective tumor response in patients with cutaneous T cell lymphoma. J. Dermatol. Sci. 62, 75–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Staff, C., Mozaffari, F., Frödin, J. E., Mellstedt, H. & Liljefors, M. Telomerase (GV1001) vaccination together with gemcitabine in advanced pancreatic cancer patients. Int. J. Oncol. 45, 1293–1303 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Greten, T. F. et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 10, 209 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  160. Middleton, G. et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 15, 829–840 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Kyte, J. A. et al. Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin. Cancer Res. 17, 4568–4580 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. van der Burg, S. H. Correlates of immune and clinical activity of novel cancer vaccines. Semin. Immunol. 39, 119–136 (2018).

    Article  PubMed  CAS  Google Scholar 

  163. Inderberg-Suso, E. M., Trachsel, S., Lislerud, K., Rasmussen, A. M. & Gaudernack, G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology 1, 670–686 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lilleby, W. et al. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol. Immunother. 66, 891–901 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04382664 (2020).

  166. Gridelli, C. et al. Clinical activity of a htert (vx-001) cancer vaccine as post-chemotherapy maintenance immunotherapy in patients with stage IV non-small cell lung cancer: final results of a randomised phase 2 clinical trial. Br. J. Cancer 122, 1461–1466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vetsika, E. K. et al. Immunological responses in cancer patients after vaccination with the therapeutic telomerase-specific vaccine Vx-001. Cancer Immunol. Immunother. 61, 157–168 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Brunsvig, P. F. et al. Long-term outcomes of a phase I study with UV1, a second generation telomerase based vaccine, in patients with advanced non-small cell lung cancer. Front. Immunol. 11, 572172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thalmensi, J. et al. Anticancer DNA vaccine based on human telomerase reverse transcriptase generates a strong and specific T cell immune response. Oncoimmunology 5, e1083670 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  170. Teixeira, L. et al. A first-in-human phase I study of INVAC-1, an optimised human telomerase DNA vaccine in patients with advanced solid tumors. Clin. Cancer Res. 26, 588–597 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03265717 (2017).

  172. Hwang, H. et al. Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT-associated proteins. Structure 22, 842–853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  CAS  PubMed  Google Scholar 

  174. Zaug, A. J., Podell, E. R. & Cech, T. R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl Acad. Sci. USA 102, 10864–10869 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, H., Nora, G. J., Ghodke, H. & Opresko, P. L. Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J. Biol. Chem. 286, 7479–7489 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Chaires, J. B. et al. Human POT1 unfolds G-quadruplexes by conformational selection. Nucleic Acids Res. 48, 4976–4991 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. De Cian, A. et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc. Natl Acad. Sci. USA 104, 17347–17352 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kim, M. Y., Vankayalapati, H., Shin-Ya, K., Wierzba, K. & Hurley, L. H. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J. Am. Chem. Soc. 124, 2098–2099 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Binz, N., Shalaby, T., Rivera, P., Shin-ya, K. & Grotzer, M. A. Telomerase inhibition, telomere shortening, cell growth suppression and induction of apoptosis by telomestatin in childhood neuroblastoma cells. Eur. J. Cancer 41, 2873–2881 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Shammas, M. A. et al. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin. Cancer Res. 10, 770–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Tauchi, T. et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene 25, 5719–5725 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Grand, C. L. et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther. 1, 565–573 (2002).

    CAS  PubMed  Google Scholar 

  183. Mikami-Terao, Y. et al. Antitumor activity of TMPyP4 interacting G-quadruplex in retinoblastoma cell lines. Exp. Eye Res. 89, 200–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Moye, A. L. et al. Telomeric G-quadruplexes are a substrate and site of localisation for human telomerase. Nat. Commun. 6, 7643 (2015).

    Article  PubMed  Google Scholar 

  186. Oganesian, L., Moon, I. K., Bryan, T. M. & Jarstfer, M. B. Extension of G-quadruplex DNA by ciliate telomerase. EMBO J. 25, 1148–1159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Paudel, B. P. et al. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife 9, e56428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cimino-Reale, G. et al. miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the emergence of an “ALT-like” phenotype in diffuse malignant peritoneal mesothelioma cells. J. Hematol. Oncol. 10, 140 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  189. Bechter, O. E., Zou, Y., Walker, W., Wright, W. E. & Shay, J. W. Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition. Cancer Res. 64, 3444–3451 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Graham, M. K. et al. Functional loss of ATRX and TERC activates alternative lengthening of telomeres (ALT) in LAPC4 prostate cancer cells. Mol. Cancer Res. 17, 2480–2491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hu, J. et al. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 148, 651–663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Henson, J. D., Neumann, A. A., Yeager, T. R. & Reddel, R. R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. Recagni, M., Bidzinska, J., Zaffaroni, N. & Folini, M. The role of alternative lengthening of telomeres mechanism in cancer: translational and therapeutic implications. Cancers https://doi.org/10.3390/cancers12040949 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Gocha, A. R., Nuovo, G., Iwenofu, O. H. & Groden, J. Human sarcomas are mosaic for telomerase-dependent and telomerase-independent telomere maintenance mechanisms: implications for telomere-based therapies. Am. J. Pathol. 182, 41–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Henson, J. D. & Reddel, R. R. Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett. 584, 3800–3811 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Matsuo, T. et al. Alternative lengthening of telomeres as a prognostic factor in malignant fibrous histiocytomas of bone. Anticancer Res. 30, 4959–4962 (2010).

    PubMed  Google Scholar 

  197. Lawlor, R. T. et al. Alternative lengthening of telomeres (ALT) influences survival in soft tissue sarcomas: a systematic review with meta-analysis. BMC Cancer 19, 232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wang, Y., Luo, W. & Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair 81, 102651 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Caron, M. C. et al. Poly(ADP-ribose) polymerase-1 antagonises DNA resection at double-strand breaks. Nat. Commun. 10, 2954 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ronson, G. E. et al. PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nat. Commun. 9, 746 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  202. Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps317 (2016).

    Article  CAS  Google Scholar 

  205. Hopkins, T. A. et al. PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone marrow. Mol. Cancer Res. 17, 409–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Zimmermann, M. et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559, 285–289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Demény, M. A. & Virág, L. The PARP enzyme family and the hallmarks of cancer part 1. Cell intrinsic hallmarks. Cancers https://doi.org/10.3390/cancers13092042 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Mukherjee, J. et al. A subset of PARP inhibitors induces lethal telomere fusion in ALT-dependent tumor cells. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abc7211 (2021).

    Article  PubMed  Google Scholar 

  209. Mukherjee, J. et al. Mutant IDH1 cooperates with ATRX loss to drive the alternative lengthening of telomere phenotype in glioma. Cancer Res. 78, 2966–2977 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Principe, D. R. Precision medicine for BRCA/PALB2-mutated pancreatic cancer and emerging strategies to improve therapeutic responses to PARP inhibition. Cancers https://doi.org/10.3390/cancers14040897 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Wu, K. et al. Evaluation of the efficacy of PARP inhibitors in metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. Front. Pharmacol. 12, 777663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cortesi, L., Rugo, H. S. & Jackisch, C. An overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol. 16, 255–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Chiang, Y. C., Lin, P. H. & Cheng, W. F. Homologous recombination deficiency assays in epithelial ovarian cancer: current status and future direction. Front. Oncol. 11, 675972 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Kamel, D., Gray, C., Walia, J. S. & Kumar, V. PARP inhibitor drugs in the treatment of breast, ovarian, prostate and pancreatic cancers: an update of clinical trials. Curr. Drug Targets 19, 21–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Ma, W., He, H. & Wang, H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol. 19, 40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Andtbacka, R. H. I. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol. 30, 115–133 (2004).

    Article  PubMed  CAS  Google Scholar 

  218. Sokolowski, N. A., Rizos, H. & Diefenbach, R. J. Oncolytic virotherapy using herpes simplex virus: how far have we come? Oncolytic Virother. 4, 207–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Liu, T. C. et al. Dominant-negative fibroblast growth factor receptor expression enhances antitumoral potency of oncolytic herpes simplex virus in neural tumors. Clin. Cancer Res. 12, 6791–6799 (2006).

    Article  CAS  PubMed  Google Scholar 

  220. Lukashchuk, V. & Everett, R. D. Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J. Virol. 84, 4026–4040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Everett, R. D., Parada, C., Gripon, P., Sirma, H. & Orr, A. Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J. Virol. 82, 2661–2672 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Poon, A. P., Liang, Y. & Roizman, B. Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a cDNA copy of the infected-cell protein no. 0. J. Virol. 77, 12671–12678 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Han, M. et al. Synthetic lethality of cytolytic HSV-1 in cancer cells with ATRX and PML deficiency. J. Cell. Sci. https://doi.org/10.1242/jcs.222349 (2019). This paper identifies a mutant version of HSV1 that can be used to selectively induce lysis in ALT-positive cancer cells.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02588105 (2015).

  226. Koneru, B. et al. ALT neuroblastoma chemoresistance due to telomere dysfunction-induced ATM activation is reversible with ATM inhibitor AZD0156. Sci. Transl. Med. 13, eabd5750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Forment, J. V. & O’Connor, M. J. Targeting the replication stress response in cancer. Pharmacol. Ther. 188, 155–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes. Dev. 19, 1040–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K. & Karnitz, L. M. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 21, 1472–1477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gorecki, L., Andrs, M., Rezacova, M. & Korabecny, J. Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): clinical candidate for cancer therapy. Pharmacol. Ther. 210, 107518 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Barnieh, F. M., Loadman, P. M. & Falconer, R. A. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Curr. Res. Pharmacol. Drug Discov. 2, 100017 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Huntoon, C. J. et al. ATR inhibition broadly sensitises ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res. 73, 3683–3691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kurmasheva, R. T. et al. Initial testing (stage 1) of M6620 (formerly VX-970), a novel ATR inhibitor, alone and combined with cisplatin and melphalan, by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer https://doi.org/10.1002/pbc.26825 (2018).

    Article  PubMed  Google Scholar 

  234. Flynn, R. L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015). This paper shows the potential efficacy of ATR inhibitors on ALT-associated cells and has led to the progression of these agents into clinical trials for patients with ALT-positive cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Deeg, K. I., Chung, I., Bauer, C. & Rippe, K. Cancer cells with alternative lengthening of telomeres do not display a general hypersensitivity to ATR inhibition. Front. Oncol. 6, 186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Laroche-Clary, A. et al. ATR inhibition broadly sensitises soft-tissue sarcoma cells to chemotherapy independent of alternative lengthening telomere (ALT) status. Sci. Rep. 10, 7488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Southgate, H. E. D., Chen, L., Tweddle, D. A. & Curtin, N. J. ATR inhibition potentiates PARP inhibitor cytotoxicity in high risk neuroblastoma cell lines by multiple mechanisms. Cancers https://doi.org/10.3390/cancers12051095 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Yazinski, S. A. et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 31, 318–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kim, H. et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 11, 3726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Lloyd, R. L. et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene 39, 4869–4883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Yap, T. A. et al. A first-in-human phase I study of ATR inhibitor M1774 in patients with solid tumors. J. Clin. Oncol. 39, TPS3153 (2021).

    Article  Google Scholar 

  242. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04170153 (2019).

  243. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04267939 (2022).

  244. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04497116 (2020).

  245. Schwab, R. A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Huang, J. et al. Remodeling of interstrand crosslink proximal replisomes is dependent on ATR, FANCM, and FANCD2. Cell Rep. 27, 1794–1808.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Gari, K., Décaillet, C., Stasiak, A. Z., Stasiak, A. & Constantinou, A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 29, 141–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  248. Voter, A. F., Manthei, K. A. & Keck, J. L. A high-throughput screening strategy to identify protein-protein interaction inhibitors that block the Fanconi anemia DNA repair pathway. J. Biomol. Screen. 21, 626–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Bryan, T. M. G-Quadruplexes at telomeres: friend or foe? Molecules 25, 3686 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  250. Tsai, Y. C. et al. A G-quadruplex stabiliser induces M-phase cell cycle arrest. J. Biol. Chem. 284, 22535–22543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Amato, R. et al. G-quadruplex stabilisation fuels the ALT pathway in ALT-positive Osteosarcoma cells. Genes 11, 304 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  252. Pennarun, G. et al. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene 24, 2917–2928 (2005).

    Article  CAS  PubMed  Google Scholar 

  253. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Woo, S.-R., Corrales, L. & Gajewski, T. F. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 36, 250–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chen, Y. A. et al. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat. Struct. Mol. Biol. 24, 1124–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  256. Chen, Q. et al. Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98, 2183–2192 (2001).

    Article  CAS  PubMed  Google Scholar 

  257. Chawla-Sarkar, M., Leaman, D. W. & Borden, E. C. Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin. Cancer Res. 7, 1821–1831 (2001).

    CAS  PubMed  Google Scholar 

  258. Sanceau, J., Poupon, M. F., Delattre, O., Sastre-Garau, X. & Wietzerbin, J. Strong inhibition of Ewing tumor xenograft growth by combination of human interferon-alpha or interferon-beta with ifosfamide. Oncogene 21, 7700–7709 (2002).

    Article  CAS  PubMed  Google Scholar 

  259. Naka, T. et al. Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors grown in SCID mice. Cancer Res. 62, 5800–5806 (2002).

    CAS  PubMed  Google Scholar 

  260. Thai, L. M. et al. Apo2l/Tumor necrosis factor-related apoptosis-inducing ligand prevents breast cancer-induced bone destruction in a mouse model. Cancer Res. 66, 5363–5370 (2006).

    Article  CAS  Google Scholar 

  261. Singh, T. R., Shankar, S., Chen, X., Asim, M. & Srivastava, R. K. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res. 63, 5390–5400 (2003).

    CAS  PubMed  Google Scholar 

  262. Naik, S., Nace, R., Barber, G. N. & Russell, S. J. Potent systemic therapy of multiple myeloma utilizing oncolytic vesicular stomatitis virus coding for interferon-β. Cancer Gene Ther. 19, 443–450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Potts, P. R. & Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14, 581–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  264. Kim, Y. S., Keyser, S. G. L. & Schneekloth, J. S. Jr. Synthesis of 2′,3′,4′-trihydroxyflavone (2-D08), an inhibitor of protein sumoylation. Bioorg. Med. Chem. Lett. 24, 1094–1097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zhou, P. et al. 2-D08 as a SUMOylation inhibitor induced ROS accumulation mediates apoptosis of acute myeloid leukemia cells possibly through the deSUMOylation of NOX2. Biochem. Biophys. Res. Commun. 513, 1063–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  266. Cheng, X. & Kao, H.-Y. Post-translational modifications of PML: consequences and implications. Front. Oncol. https://doi.org/10.3389/fonc.2012.00210 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Episkopou, H., Diman, A., Claude, E., Viceconte, N. & Decottignies, A. TSPYL5 depletion induces specific death of ALT cells through USP7-dependent proteasomal degradation of POT1. Mol. Cell 75, 469–482.e6 (2019). This study demonstrates that components of APBs protect shelterin complex components from degradation and are rational therapeutic targets.

    Article  CAS  PubMed  Google Scholar 

  268. Diotti, R. & Loayza, D. Shelterin complex and associated factors at human telomeres. Nucleus 2, 119–135 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Zimmermann, M., Kibe, T., Kabir, S. & de Lange, T. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev. 28, 2477–2491 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  270. Li, X. et al. Dynamics of TRF1 organizing a single human telomere. Nucleic Acids Res. 49, 760–775 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  271. Bejarano, L. et al. Inhibition of TRF1 telomere protein impairs tumor initiation and progression in glioblastoma mouse models and patient-derived xenografts. Cancer Cell 32, 590–607.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  272. Bejarano, L. et al. Multiple cancer pathways regulate telomere protection. EMBO Mol. Med. 11, e10292 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  273. García-Beccaria, M. et al. Therapeutic inhibition of TRF1 impairs the growth of p53-deficient K-RasG12V-induced lung cancer by induction of telomeric DNA damage. EMBO Mol. Med. 7, 930–949 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  274. Méndez-Pertuz, M. et al. Modulation of telomere protection by the PI3K/AKT pathway. Nat. Commun. 8, 1278 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  275. Benarroch-Popivker, D. et al. TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol. Cell 61, 274–286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Rai, R., Chen, Y., Lei, M. & Chang, S. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat. Commun. 7, 10881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ran, X. et al. Design of high-affinity stapled peptides to target the repressor activator protein 1 (RAP1)/telomeric repeat-binding factor 2 (TRF2) protein-protein interaction in the shelterin complex. J. Med. Chem. 59, 328–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  278. Chen, X. et al. Cyclic peptidic mimetics of apollo peptides targeting telomeric repeat binding factor 2 (TRF2) and apollo interaction. ACS Med. Chem. Lett. 9, 507–511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Di Maro, S. et al. Shading the TRF2 recruiting function: a new horizon in drug development. J. Am. Chem. Soc. 136, 16708–16711 (2014).

    Article  CAS  PubMed  Google Scholar 

  280. MacKenzie, D. Jr. et al. ALT positivity in human cancers: prevalence and clinical insights. Cancers 13, 2384 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Hájek, M., Matulová, N., Votruba, I., Holý, A. & Tloust’ová, E. Inhibition of human telomerase by diphosphates of acyclic nucleoside phosphonates. Biochem. Pharmacol. 70, 894–900 (2005).

    Article  PubMed  CAS  Google Scholar 

  282. De Clercq, E. Tanovea® for the treatment of lymphoma in dogs. Biochem. Pharmacol. 154, 265–269 (2018).

    Article  PubMed  CAS  Google Scholar 

  283. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02854072 (2016).

  284. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01935154 (2013).

  285. Cummaro, A., Fotticchia, I., Franceschin, M., Giancola, C. & Petraccone, L. Binding properties of human telomeric quadruplex multimers: a new route for drug design. Biochimie 93, 1392–1400 (2011).

    Article  CAS  PubMed  Google Scholar 

  286. Mulholland, K., Siddiquei, F. & Wu, C. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. Phys. Chem. Chem. Phys. 19, 18685–18694 (2017).

    Article  CAS  PubMed  Google Scholar 

  287. Di Antonio, M., Rodriguez, R. & Balasubramanian, S. Experimental approaches to identify cellular G-quadruplex structures and functions. Methods 57, 84–92 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  288. Nguyen, T. H. D. et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 557, 190–195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Dagg, R. A. et al. Extensive proliferation of human cancer cells with ever-shorter telomeres. Cell Rep. 19, 2544–2556 (2017).

    Article  CAS  PubMed  Google Scholar 

  290. Viceconte, N. et al. Highly aggressive metastatic melanoma cells unable to maintain telomere length. Cell Rep. 19, 2529–2543 (2017).

    Article  CAS  PubMed  Google Scholar 

  291. Hartlieb, S. A. et al. Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome. Nat. Commun. 12, 1269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Claude, E. et al. Detection of alternative lengthening of telomeres mechanism on tumor sections. Mol. Biomed. 2, 32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Lau, L. M. et al. Detection of alternative lengthening of telomeres by telomere quantitative PCR. Nucleic Acids Res. 41, e34 (2013).

    Article  CAS  PubMed  Google Scholar 

  295. Henson, J. D. et al. The C-circle assay for alternative-lengthening-of-telomeres activity. Methods 114, 74–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  296. Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  297. Lovejoy, C. A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 8, e1002772 (2012). This study uses fibroblast cell lines with the same genetic background but different TMMs to directly compare the effects of telomerase versus ALT positivity upon cell biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Kaul, Z. et al. Functional characterisation of miR-708 microRNA in telomerase positive and negative human cancer cells. Sci. Rep. 11, 17052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Wright, W. E., Pereira-Smith, O. M. & Shay, J. W. Reversible cellular senescence: implications for immortalisation of normal human diploid fibroblasts. Mol. Cell. Biol. 9, 3088–3092 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Tilman, G. et al. Subtelomeric DNA hypomethylation is not required for telomeric sister chromatid exchanges in ALT cells. Oncogene 28, 1682–1693 (2009).

    Article  CAS  PubMed  Google Scholar 

  301. Perrem, K., Colgin, L. M., Neumann, A. A., Yeager, T. R. & Reddel, R. R. Coexistence of alternative lengthening of telomeres and telomerase in hTERT-transfected GM847 cells. Mol. Cell. Biol. 21, 3862–3875 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Marie-Egyptienne, D. T., Brault, M. E., Zhu, S. & Autexier, C. Telomerase inhibition in a mouse cell line with long telomeres leads to rapid telomerase reactivation. Exp. Cell Res. 314, 668–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  303. Liu, W. et al. Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC. Oncotarget 8, 179–190 (2017).

    Article  PubMed  Google Scholar 

  304. Hu, Y., Bobb, D., Lu, Y., He, J. & Dome, J. S. Effect of telomerase inhibition on preclinical models of malignant rhabdoid tumor. Cancer Genet. 207, 403–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  305. Li, Q. et al. Human telomerase reverse transcriptase as a therapeutic target of dihydroartemisinin for esophageal squamous cancer. Front. Pharmacol. 12, 769787 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Frank, L. et al. ALT-FISH quantifies alternative lengthening of telomeres activity by imaging of single-stranded repeats. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac113 (2022). Along with Claude et al.292, this study documents a new method to accurately identify ALT-positive cells using native telomere-FISH.

    Article  PubMed  PubMed Central  Google Scholar 

  307. Tejera, A. M., Alonso, D. F., Gomez, D. E. & Olivero, O. A. Chronic in vitro exposure to 3′-azido-2′,3′-dideoxythymidine induces senescence and apoptosis and reduces tumorigenicity of metastatic mouse mammary tumor cells. Breast Cancer Res. Treat. 65, 93–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  308. Vera, E., Bernardes de Jesus, B., Foronda, M., Flores, J. M. & Blasco, M. A. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2, 732–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  309. Lauvrak, S. U. et al. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Br. J. Cancer 109, 2228–2236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Mohseny, A. B. et al. Functional characterisation of osteosarcoma cell lines provides representative models to study the human disease. Lab. Invest. 91, 1195–1205 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Australian Medical Research Future Fund (2007488) for funding. The authors thank Alexander Sobinoff, Robert Lu and Robyn Yeh for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.G. researched data for the article. J.G. and H.A.P. contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Hilda A. Pickett.

Ethics declarations

Competing interests

H.A.P. is a co-founder and shareholder of Tessellate Bio. J.G. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Lifeng Xu, Vinay Tergaonkar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Homology-directed repair

(HDR). A type of double-strand break repair where a homologous section on a sister chromatid is used as a template to guide DNA synthesis and repair. It involves processing of the double-strand break by the MRN complex to create single-stranded overhangs, prior to RAD51-mediated or RAD52-mediated strand invasion of the sister chromatid to enable DNA extension. Intermediates are then resolved to complete the repair.

Rolling circle amplification reaction

An isothermal DNA or RNA amplification reaction where circular oligonucleotides (for example, C-circles) function as a template for the DNA or RNA polymerase.

5′ Resection

A process where the blunt end of a double-strand break undergoes nucleolytic degradation in the 5′ to 3′ direction to leave a 3′ single-stranded overhang.

Telomere replication

Replication of the telomere repeat tracks.

C-strand fill-in

Telomeres consist of G-strand (5′-TTAGGG-3′) and complementary C-strand (3′-AATCCC-5′) repeats. Telomerase extends the G-strand, resulting in a G-rich single-stranded 3′ overhang. C-strand fill-in is the process by which the complementary C-strand is synthesized by DNA polymerase α-primase 12 to convert the single-stranded DNA of the 3′ overhang into double-stranded DNA.

G-quadruplexes

(G4s). Non-canonical secondary structures formed by guanine (G)-rich DNA sequences.

Displacement-loops

(D-loops). D-loops form when single-stranded DNA invades a section of double-stranded DNA, causing it to separate into a loop structure.

Strand invasion

Single-stranded DNA invades a section of double-stranded DNA with sequence homology.

Osteoid

An unmineralized organic tissue that becomes calcified and contributes to the bone matrix.

Replisome

A protein complex that can exhibit helicase, primase and DNA polymerase activities to replicate DNA of both the leading and lagging strand. During ALT, the replisome consists of proliferating cell nuclear antigen (PCNA), replication factor C (RFC) and DNA polymerase δ (Polδ).

Branch migration

A process that occurs after strand invasion, where one strand of DNA is processively exchanged for another at Holliday junctions or D-loops, resulting in movement of the junction.

Homologous recombination

(HR). The most common form of HDR, whereby exchange of genetic material occurs between two homologous chromosomes.

ALT-associated promyelocytic leukaemia bodies

(APBs). Membraneless structures formed by phase separation that promote the aggregation of homologous recombination proteins, nucleases, telomere-associated proteins, PML proteins and telomeric DNA. APBs are a biomarker of alternative lengthening of telomeres (ALT).

Small ubiquitin-like modifier

(SUMO). Units that are covalently attached to proteins post-translationally in a process known as sumoylation. This can alter several properties of the protein, including protein stability, localization, and addition or removal of protein–protein binding sites.

Break-induced replication

Recombination-dependent DNA synthesis that initiates from a double-strand break and occurs following strand invasion mediated by RAD51 or RAD52.

Extrachromosomal telomeric repeats

(ECTRs). Linear and circular extrachromosomal copies of telomeric sequences that are generated during homologous recombination in cells using ALT, including C-circles and t-circles. ECTRs are a biomarker of ALT.

Myelofibrosis

A rare type of bone marrow cancer that prevents the production of blood cells, leading to anaemia and scar tissue in the bone marrow.

Transcription elongation

A step in RNA transcription that occurs following initiation and prior to termination when the RNA sequence is synthesized complementary to the DNA template.

Inhibitory concentration 50

(IC50). The dose of an agent required to inhibit 50% of cell growth.

Epitope spreading

The process by which epitopes, distinct from the inducing epitope of a vaccine, become major targets of the immune response.

Macrocyclic compound

A compound made up of chemical ring structures that each consist of 12 or more carbon atoms.

Porphyrin

A molecule that consists of a ring of four linked heterocyclic groups that can be held together by a central metal atom.

Non-homologous end-joining

A repair pathway where double-strand breaks are ligated together. Non-homologous end-joining (NHEJ) consists of either canonical NHEJ or alternative NHEJ. In the canonical pathway, the two ends of the DNA are bound by Ku70 and Ku80 and DNA-PKcs, which come together to form the synaptic complex. This is then ligated together by the ligase IV–XRCC4 complex. Alternative NHEJ occurs independently of canonical NHEJ proteins and involves the direct joining of short sequence homologies (microhomologies).

Mitotic DNA synthesis

The process of DNA repair synthesis during mitosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Pickett, H.A. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 22, 515–532 (2022). https://doi.org/10.1038/s41568-022-00490-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00490-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research