Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrated microwave-to-optics interface for scalable quantum computing

Abstract

Microwave-to-optics transduction is emerging as a vital technology for scaling quantum computers and quantum networks. To establish useful entanglement links between qubit processing units, several key conditions must be simultaneously met: the transducer must add less than a single quantum of input-referred noise and operate with high efficiency, as well as large bandwidth and high repetition rate. Here we present a design for an integrated transducer based on a planar superconducting resonator coupled to a silicon photonic cavity through a mechanical oscillator made of lithium niobate on silicon. We experimentally demonstrate its performance with a transduction efficiency of 0.9% with 1 μW of continuous optical power and a spectral bandwidth of 14.8 MHz. With short optical pulses, we measure the added noise that is limited to a few photons, with a repetition rate of up to 100 kHz. Our device directly couples to a 50 Ω transmission line and can be scaled to a large number of transducers on a single chip, laying the foundations for distributed quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microwave-to-optical transduction device.
Fig. 2: Resonant electromechanical coupling and bidirectional transduction.
Fig. 3: Pulsed transduction and added noise.
Fig. 4: Repetition rate and quasiparticle generation.

Similar content being viewed by others

Data availability

Source data for the figures are available via Zenodo at https://doi.org/10.5281/zenodo.8232627.

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  3. Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).

    Article  Google Scholar 

  4. Ladd, T. D. et al. Quantum computers. Nature 464, 45 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Article  PubMed  ADS  Google Scholar 

  6. Gambetta, J. IBM Research Blog https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing (2022).

  7. Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  8. Krastanov, S. et al. Optically-heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Bravyi, S., Dial, O., Gambetta, J. M., Gil, D. & Nazario, Z. The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022).

    Article  CAS  ADS  Google Scholar 

  10. Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).

    Article  ADS  Google Scholar 

  12. Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Vainsencher, A., Satzinger, K. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl. Phys. Lett. 109, 033107 (2016).

    Article  ADS  Google Scholar 

  15. Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Stockill, R. et al. Ultra-low-noise microwave to optics conversion in gallium phosphide. Nat. Commun. 13, 2496 (2022).

    Article  Google Scholar 

  18. Higginbotham, A. P. et al. Electro-optic correlations improve an efficient mechanical converter. Nat. Phys. 14, 1038 (2018).

    Article  CAS  Google Scholar 

  19. Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 4460 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Han, J. et al. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms. Phys. Rev. Lett. 120, 093201 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Fernandez-Gonzalvo, X., Horvath, S. P., Chen, Y. H. & Longdell, J. J. Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical signal conversion. Phys. Rev. A 100, 033807 (2019).

    Article  CAS  ADS  Google Scholar 

  22. Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article  ADS  Google Scholar 

  24. Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 20501 (2020).

    Article  Google Scholar 

  25. Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).

    Article  ADS  Google Scholar 

  26. Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mat. 10, 875 (2021).

    Article  Google Scholar 

  27. Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Horsman, C., Fowler, A., Devitt, S. & van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  29. Beals, R. et al. Efficient distributed quantum computing. Proc. R. Soc. A 469, 20120686 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  30. Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Article  Google Scholar 

  31. Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 34009 (2020).

    Article  Google Scholar 

  32. Brubaker, B. M. et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer. Phys. Rev. X 12, 021062 (2022).

    CAS  Google Scholar 

  33. Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. https://doi.org/10.1038/s41567-023-02129-w (2023).

  34. Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    Article  ADS  Google Scholar 

  35. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  36. Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators via wireless control of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).

    Article  ADS  Google Scholar 

  37. Kuwictsova, I. E., Zaitsev, B. D., Joshi, S. G. & Borodina, I. A. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 48, 322 (2001).

    Article  Google Scholar 

  38. Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett. 124, 173601 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591, 575 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Delaney, R. D. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Safavi-Naeini for valuable discussions and support. We thank J. van Oven and D. de Jong at Qblox for technical support. We further gratefully acknowledge assistance from E. He, helpful discussions with C. Jurczak and J. Fink, supply of wafers from NGK Insulators and the hospitality of the Department of Quantum Nanoscience at Delft University of Technology and the Kavli Nanolab Delft. This work is financially supported by the European Innovation Council (EIC Accelerator QModem 190109269) and the Province of Zuid-Holland (R&D samenwerkingsproject QConnect).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the simulation, fabrication and testing of the device. P.D., S.S. and M.L. fabricated the device. M.J.W., A.C.B., R.S., B.H., T.C.v.T. and F.H. performed the experiments described in the manuscript. B.H., S.S. and R.S. simulated the device performance. M.J.W., R.S., S.G., A.C.B. and B.H. wrote the manuscript with input and editing from all authors.

Corresponding authors

Correspondence to Simon Gröblacher or Robert Stockill.

Ethics declarations

Competing interests

All authors are or have been employed by QphoX B.V. and are, have been, or may in the future be participants in incentive stock plans at QphoX B.V. The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–X, Figs. 1–6, Tables 1 and 2 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weaver, M.J., Duivestein, P., Bernasconi, A.C. et al. An integrated microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166–172 (2024). https://doi.org/10.1038/s41565-023-01515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01515-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing