Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz field-induced nonlinear coupling of two magnon modes in an antiferromagnet

Abstract

Magnons are quantized collective spin-wave excitations in magnetically ordered materials. Revealing the interactions among these collective modes is crucial for the understanding of fundamental many-body effects in such systems and the development of high-speed information transport and processing devices based on them. Nevertheless, identifying couplings between individual magnon modes remains a long-standing challenge. Here we demonstrate spectroscopic fingerprints of anharmonic coupling between distinct magnon modes in an antiferromagnet, as evidenced by coherent photon emission at the sum and difference frequencies of the two modes. This discovery is enabled by driving two magnon modes coherently with a pair of tailored terahertz fields and then disentangling a mixture of nonlinear responses with different origins. Our approach provides a route for generating nonlinear magnon–magnon mixing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct magnon modes in the canted antiferromagnet YFeO3.
Fig. 2: Nonlinear 2D THz spectra of YFeO3.
Fig. 3: Field dependence and 2D THz polarimetry of the SFG and DFG signals.
Fig. 4: Excitation pathways of nonlinear magnonic states.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The codes used to perform the simulations and to analyse the data in this work are available from the corresponding authors upon request.

References

  1. Turner, D. B. & Nelson, K. A. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466, 1089–1092 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  3. Kozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15, 387–392 (2019).

    Article  CAS  Google Scholar 

  4. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  CAS  Google Scholar 

  5. Mashkovich, E. A. et al. Terahertz light-driven coupling of antiferromagnetic spins to lattice. Science 374, 1608–1611 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bethe, H. Zur theorie der metalle. Z. Phys. 71, 205–226 (1931).

    Article  ADS  CAS  Google Scholar 

  8. Wortis, M. Bound states of two spin waves in the Heisenberg ferromagnet. Phys. Rev. 132, 85 (1963).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Bai, X. et al. Hybridized quadrupolar excitations in the spin-anisotropic frustrated magnet FeI2. Nat. Phys. 17, 467–472 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Borisenko, I. et al. Direct evidence of spatial stability of Bose–Einstein condensate of magnons. Nat. Commun. 11, 1–7 (2020).

    Article  Google Scholar 

  12. Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article  ADS  Google Scholar 

  13. Li, J., Yang, C.-J., Mondal, R., Tzschaschel, C. & Pal, S. A perspective on nonlinearities in coherent magnetization dynamics. Appl. Phys. Lett. 120, 050501 (2022).

    Article  ADS  CAS  Google Scholar 

  14. Wang, Z. et al. Magnonic frequency comb through nonlinear magnon–skyrmion scattering. Phys. Rev. Lett. 127, 037202 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Carmiggelt, J. J. et al. Broadband microwave detection using electron spins in a hybrid diamond-magnet sensor chip. Nat. Commun. 14, 490 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haus, H. A. & Huang, W. Coupled-mode theory. Proc. IEEE 79, 1505–1518 (1991).

    Article  Google Scholar 

  17. Boyd, R. W., Gaeta, A. L. & Giese, E. in Springer Handbook of Atomic, Molecular, and Optical Physics (ed Drake, G.W.F.) 1097–1110 (Springer, 2008).

  18. MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon–magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Makihara, T. et al. Ultrastrong magnon–magnon coupling dominated by antiresonant interactions. Nat. Commun. 12, 3115 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, O. et al. Nonlinear magnon polaritons. Phys. Rev. Lett. 130, 046703 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Songvilay, M. et al. Anharmonic magnon excitations in noncollinear and charge-ordered RbFe2+Fe3+F6. Phys. Rev. Lett. 121, 087201 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5, 31–34 (2011).

    Article  ADS  CAS  Google Scholar 

  23. Teo, S. M., Ofori-Okai, B. K., Werley, C. A. & Nelson, K. A. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Rev. Sci. Instrum. 86, 051301 (2015).

    Article  ADS  PubMed  Google Scholar 

  24. Gao, F. Y., Zhang, Z., Liu, Z.-J. & Nelson, K. A. High-speed two-dimensional terahertz spectroscopy with echelon-based shot-to-shot balanced detection. Opt. Lett. 47, 3479–3482 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Dzyaloshinsky, I. A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  ADS  CAS  Google Scholar 

  26. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).

    Article  ADS  CAS  Google Scholar 

  27. Lu, J. et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves. Phys. Rev. Lett. 118, 207204 (2017).

    Article  ADS  PubMed  Google Scholar 

  28. Yamaguchi, K., Nakajima, M. & Suemoto, T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Phys. Rev. Lett. 105, 237201 (2010).

    Article  ADS  PubMed  Google Scholar 

  29. Jin, Z. et al. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy. Phys. Rev. B 87, 094422 (2013).

    Article  ADS  Google Scholar 

  30. Zhang, Z. et al. Terahertz field-driven magnon upconversion in an antiferromagnet. Nat. Phys. https://doi.org/10.1038/s41567-023-02350-7 (2024).

  31. Khalil, M. & Tokmakoff, A. Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy. Chem. Phys. 266, 213–230 (2001).

    Article  CAS  Google Scholar 

  32. Singh, R. et al. Polarization-dependent exciton linewidth in semiconductor quantum wells: A consequence of bosonic nature of excitons. Phys. Rev. B 94, 081304 (2016).

    Article  ADS  Google Scholar 

  33. Stone, K. W. et al. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324, 1169–1173 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Mai, T. T. et al. Magnon–phonon hybridization in 2D antiferromagnet MnPSe3. Sci. Adv. 7, eabj3106 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, S. et al. Direct observation of magnon–phonon strong coupling in two-dimensional antiferromagnet at high magnetic fields. Phys. Rev. Lett. 127, 097401 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Cui, J. et al. Chirality selective magnon–phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet. Nat. Commun. 14, 3396 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wan, Y. & Armitage, N. Resolving continua of fractional excitations by spinon echo in THz 2D coherent spectroscopy. Phys. Rev. Lett. 122, 257401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Choi, W., Lee, K. H. & Kim, Y. B. Theory of two-dimensional nonlinear spectroscopy for the Kitaev spin liquid. Phys. Rev. Lett. 124, 117205 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Nandkishore, R. M., Choi, W. & Kim, Y. B. Spectroscopic fingerprints of gapped quantum spin liquids, both conventional and fractonic. Phys. Rev. Res. 3, 013254 (2021).

    Article  CAS  Google Scholar 

  41. Li, Z.-L., Oshikawa, M. & Wan, Y. Photon echo from lensing of fractional excitations in Tomonaga–Luttinger spin liquid. Phys. Rev. X 11, 031035 (2021).

    CAS  Google Scholar 

  42. Yeh, K.-L., Hebling, J., Hoffmann, M. C. & Nelson, K. A. Generation of high average power 1 kHz shaped THz pulses via optical rectification. Opt. Commun. 281, 3567–3570 (2008).

    Article  ADS  CAS  Google Scholar 

  43. Kurihara, T. et al. Macroscopic magnetization control by symmetry breaking of photoinduced spin reorientation with intense terahertz magnetic near field. Phys. Rev. Lett. 120, 107202 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.Z., Z.-J.L., M.T.W. and K.A.N. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, under award no. DE-SC0019126. Work at UT Austin was primarily supported by the Robert A. Welch Foundation (F-2092-20220331) (to F.Y.G. for data taking and analysis) and the United States Army Research Office (W911NF-23-1-0394) (to E.B. for data interpretation, manuscript writing and supervision). Y.-C.C. acknowledges direct funding from the MIT UROP. A.v.H. gratefully acknowledges funding by the Humboldt Foundation. J.C. and P.N. were supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the US Department of Energy (DOE). P.N. acknowledges support as a Moore Inventor Fellow through grant no. GBMF8048 from the Gordon and Betty Moore Foundation and from the John Simon Guggenheim Memorial Foundation (Guggenheim Fellowship). T.K. acknowledges support from JSPS KAKENHI (21K14550, 20K22478).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and F.Y.G. conceived the study and designed the research. Z.Z. and F.Y.G. performed the experiments and analysed the data, assisted by Z.-J.L. and Y.-C.C. Z.Z., F.Y.G., J.B.C., Y.-C.C. and M.T.W. performed theoretical analysis and simulated the LLG dynamics. T.K. and T.S. provided the sample. Z.Z., F.Y.G., J.B.C., A.v.H., P.N., E.B. and K.A.N. interpreted the data. Z.Z., F.Y.G., E.B. and K.A.N. wrote the manuscript. K.A.N. and E.B. supervised the project.

Corresponding authors

Correspondence to Edoardo Baldini or Keith A. Nelson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Simulated 2D THz spectra of YFeO3.

Theoretical 2D THz spectra obtained from LLG simulations of b-cut YFeO3 using the same THz magnetic field orientations shown in Fig. 2: a, HTHz || a axis, b, HTHz || c axis, and c, HTHz || ac bisector. Nonlinear mixing signals: SFG and DFG appear only upon simultaneous excitation of both qFM and qAFM modes when HTHz || ac bisector, in agreement with our experimental observations.

Source data

Extended Data Fig. 2 Simulated polarimetry patterns.

(left) Theoretical anisotropic SFG and DFG signal amplitudes are shown as a function of azimuthal angle θ for both parallel- (\({{{{\rm{H}}}}}_{{{{\rm{THz}}}}}| | {{{{\rm{H}}}}}_{\det }\)) and cross-polarized (\({{{{\rm{H}}}}}_{{{{\rm{THz}}}}}\perp {{{{\rm{H}}}}}_{\det }\)) detection configurations along with the (right) corresponding decompositions into excitation and detection terms. For each \({{\chi }_{{{{\rm{m}}}}}}^{(2)}\) magnon mixing signal, the generation mechanism is the result of the simultaneous excitation of qFM (\(\cos \theta\)) and qAFM (sin θ) modes, while nonlinear emission occurs along the crystallographic a-axis leading to separate symmetry terms for parallel- (\(\cos \theta\)) and cross-polarized (\(\sin \theta\)) signals.

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–8 and Tables 1 and 2.

Source data

Source Data Fig. 1

1D time-domain THz waveforms, associated frequency domain THz waveforms, 1D THz polarimetry signal.

Source Data Fig. 2

Experimental 2D THz spectra.

Source Data Fig. 3

Field-dependent nonlinear THz signal, nonlinear 2D THz polarimetry.

Source Data Fig. 4

Simulated nonlinear spin dynamics.

Source Data Extended Data Fig. 1

Simulated 2D THz Spectra.

Source Data Extended Data Fig. 2

Theoretical nonlinear polarimetry signals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Gao, F.Y., Curtis, J.B. et al. Terahertz field-induced nonlinear coupling of two magnon modes in an antiferromagnet. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02386-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing