Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz-field-driven magnon upconversion in an antiferromagnet

Abstract

Excitation and nonlinear control of lattice vibrations with light has become a powerful method to manipulate the properties of quantum materials out of equilibrium. Generalizing from coherent phonon–phonon interactions to nonlinear couplings among other types of collective mode would open additional opportunities to design the dynamic properties of solids. For example, the collective excitations of magnetic order—magnons—can carry information with little energy dissipation, and their coherent and nonlinear control would provide an attractive route to achieve collective-mode-based information processing and storage in forthcoming spintronics and magnonics. Here we discover that intense terahertz fields can initiate the processes of magnon upconversion mediated by an intermediate magnetic resonance. By utilizing two-dimensional terahertz polarimetry, we demonstrate the unidirectional nature of coupling between distinct magnon modes of a canted antiferromagnet. The calculations of spin dynamics further suggest that this coupling is a universal feature of antiferromagnets with canted magnetic moments. These results demonstrate a route to induce desirable energy transfer pathways and a terahertz-induced coupling between coherent magnons in solids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: THz-field-driven magnon responses and THz polarimetry on ErFeO3 at room temperature.
Fig. 2: Two-dimensional THz spectroscopy of the magnon upconversion signal at room temperature.
Fig. 3: Temperature dependence of magnon upconversion.
Fig. 4: Origin of the magnon upconversion process.

Similar content being viewed by others

Data availability

The data presented in this work are available via Zenodo at https://zenodo.org/records/10050662.

Code availability

The codes used to perform the simulations and analyse the data in this work are available from the corresponding authors upon request.

References

  1. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).

  2. Foias, C. et al. Navier-Stokes Equations and Turbulence Vol. 83 (Cambridge Univ. Press, 2001).

  3. Friston, K. J. Book review: brain function, nonlinear coupling, and neuronal transients. Neuroscientist 7, 406–418 (2001).

    Article  Google Scholar 

  4. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  5. Kozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15, 387–392 (2019).

    Article  Google Scholar 

  6. Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    Article  ADS  Google Scholar 

  7. Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article  ADS  Google Scholar 

  8. Nova, T. et al. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  ADS  Google Scholar 

  9. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    Article  Google Scholar 

  10. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  Google Scholar 

  11. Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021).

    Article  ADS  Google Scholar 

  12. Stupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).

    Article  Google Scholar 

  13. Juraschek, D. M., Wang, D. S. & Narang, P. Sum-frequency excitation of coherent magnons. Phys. Rev. B 103, 094407 (2021).

    Article  ADS  Google Scholar 

  14. Hortensius, J. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

    Article  Google Scholar 

  15. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article  ADS  Google Scholar 

  16. Chumak, A. V. et al. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  17. Michael, M. H. et al. Parametric resonance of Josephson plasma waves: a theory for optically amplified interlayer superconductivity in YBa2Cu3O6+x. Phys. Rev. B 102, 174505 (2020).

    Article  ADS  Google Scholar 

  18. Juraschek, D. M., Meier, Q. N. & Narang, P. Parametric excitation of an optically silent Goldstone-like phonon mode. Phys. Rev. Lett. 124, 117401 (2020).

    Article  ADS  Google Scholar 

  19. Curtis, J. B. et al. Cavity magnon-polaritons in cuprate parent compounds. Phys. Rev. Research 4, 013101 (2022).

    Article  ADS  Google Scholar 

  20. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  ADS  Google Scholar 

  21. Lu, J. et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves. Phys. Rev. Lett. 118, 207204 (2017).

    Article  ADS  Google Scholar 

  22. Kurihara, T. et al. Observation of terahertz-induced dynamical spin canting in orthoferrite magnon by magnetorefractive probing. Commun. Phys. 6, 51 (2023).

    Article  Google Scholar 

  23. Zhang, Z. et al. Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields. Nat. Commun. 14, 1795 (2023).

    Article  Google Scholar 

  24. Mukai, Y. et al. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field. New J. Phys. 18, 013045 (2016).

  25. Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).

    Article  ADS  Google Scholar 

  26. Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

    Article  ADS  Google Scholar 

  27. Mashkovich, E. et al. Terahertz optomagnetism: nonlinear THz excitation of GHz spin waves in antiferromagnetic FeBO3. Phys. Rev. Lett. 123, 157202 (2019).

    Article  ADS  Google Scholar 

  28. Yamaguchi, K. et al. Terahertz time-domain observation of spin reorientation in orthoferrite ErFeO3 through magnetic free induction decay. Phys. Rev. Lett. 110, 137204 (2013).

    Article  ADS  Google Scholar 

  29. Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. Science 361, 794–797 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  30. Teo, S. M. et al. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Rev. Sci. Instrum. 86, 051301 (2015).

    Article  ADS  Google Scholar 

  31. Gao, F. Y. et al. High-speed two-dimensional terahertz spectroscopy with echelon-based shot-to-shot balanced detection. Opt. Lett. 47, 3479–3482 (2022).

    Article  ADS  Google Scholar 

  32. Grishunin, K. et al. Excitation and detection of terahertz coherent spin waves in antiferromagnetic α-Fe2O3. Phys. Rev. B. 104, 024419 (2021).

    Article  ADS  Google Scholar 

  33. Johnson, C. L., Knighton, B. E. & Johnson, J. A. Distinguishing nonlinear terahertz excitation pathways with two-dimensional spectroscopy. Phys. Rev. Lett. 122, 073901 (2019).

    Article  ADS  Google Scholar 

  34. Mahmood, F. et al. Observation of a marginal Fermi glass. Nat. Phys. 17, 627–631 (2021).

    Article  ADS  Google Scholar 

  35. Mashkovich, E. A. et al. Terahertz light–driven coupling of antiferromagnetic spins to lattice. Science 374, 1608–1611 (2021).

    Article  ADS  Google Scholar 

  36. Zhang, Y. et al. Nonlinear rotational spectroscopy reveals many-body interactions in water molecules. Proc. Natl Acad. Sci. USA 118, e2020941118 (2021).

    Article  Google Scholar 

  37. Gorodetsky, G. & Lüthi, B. Sound-wave-soft-mode interaction near displacive phase transitions: spin reorientation in ErFeO3. Phys. Rev. B 2, 3688 (1970).

    Article  ADS  Google Scholar 

  38. Khalsa, G., Benedek, N. A. & Moses, J. Ultrafast control of material optical properties via the infrared resonant Raman effect. Phys. Rev. X 11, 021067 (2021).

    Google Scholar 

  39. Brächer, T., Pirro, P. & Hillebrands, B. Parallel pumping for magnon spintronics: amplification and manipulation of magnon spin currents on the micron-scale. Phys. Rep. 699, 1–34 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  40. Lisenkov, I., Jander, A. & Dhagat, P. Magnetoelastic parametric instabilities of localized spin waves induced by traveling elastic waves. Phys. Rev. B 99, 184433 (2019).

    Article  ADS  Google Scholar 

  41. Carmiggelt, J. J. et al. Broadband microwave detection using electron spins in a hybrid diamond-magnet sensor chip. Nat. Commun. 14, 490 (2023).

    Article  ADS  Google Scholar 

  42. Yeh, K.-L. et al. Generation of high average power 1 kHz shaped THz pulses via optical rectification. Opt. Commun. 281, 3567–3570 (2008).

    Article  ADS  Google Scholar 

  43. Gao, F. Y. et al. Snapshots of a light-induced metastable hidden phase driven by the collapse of charge order. Sci. Adv. 8, eabp9076 (2022).

    Article  ADS  Google Scholar 

  44. Noe, G. T. et al. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields. Opt. Express 24, 30328–30337 (2016).

    Article  ADS  Google Scholar 

  45. Duchi, M. et al. 2D-Raman-THz spectroscopy with single-shot THz detection. J. Chem. Phys. 155, 174201 (2021).

    Article  ADS  Google Scholar 

  46. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.Z., Z.-J.L., E.R.S. and K.A.N acknowledge support from the US Department of Energy (DOE), Office of Basic Energy Sciences, under award no. DE-SC0019126. Work at UT Austin was primarily supported by the Robert A. Welch Foundation (F-2092-20220331) (to F.Y.G. for data taking and analysis) and the United States Army Research Office (W911NF-23-1-0394) (to E.B. for data interpretation, manuscript writing and supervision). Y.-C.C. acknowledges direct funding from the MIT UROP. S.C. and W.R. acknowledge support from the Science and Technology Commission of Shanghai Municipality (no. 21JC1402600) and the National Natural Science Foundation of China (NSFC; nos. 12074242, 12374116 and 12074241). JC and PN were supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the U.S. Department of Energy (DOE). P.N. acknowledges support as a Moore Inventor Fellow through grant no. GBMF8048 from the Gordon and Betty Moore Foundation and from the John Simon Guggenheim Memorial Foundation (Guggenheim Fellowship). A.v.H. gratefully acknowledges funding by the Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. conceived the study. Z.Z. and F.Y.G. designed and performed the experiments and analysed the data, supported by Z.-J.L. and Y.-C.C. Z.Z., Y.-C.C. and F.Y.G. performed the spin dynamics simulations, supported by J.B.C. and E.R.S. X.M. grew and cut the high-quality single crystals used in the experiments under the guidance of W.R. and S.C. Z.Z., F.Y.G., J.B.C., P.N., A.v.H., E.B. and K.A.N. interpreted the data. Z.Z., F.Y.G., E.B., A.v.H. and K.A.N. led the paper preparation with input from all the authors. K.A.N. and E.B. supervised the project.

Corresponding authors

Correspondence to Shixun Cao, Edoardo Baldini or Keith A. Nelson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Hideki Hirori, Olena Gomonay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. S1–9 and Table S1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Gao, F.Y., Chien, YC. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. (2024). https://doi.org/10.1038/s41567-023-02350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-023-02350-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing