Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin of the critical state in sheared granular materials

Abstract

Dense granular flow is common in nature and industrial applications. A hallmark behaviour of granular flow is the emergence of a critical state when sufficient strain is applied, which has traditionally been understood with empirical constitutive theories. However, these theories are macroscopic ones without microscopic basis and, therefore, the physical origin of the critical state remains unknown. Here we demonstrate that the critical state corresponds to the random loose packing state where all the microstates are sampled with equal probability. X-ray tomography and shear force measurements allow us to monitor the microscopic processes of sheared granular materials and show that interparticle frictional contacts alter the density of states. This, consequently, leads to different critical state volume fractions. Despite this qualitative difference, we find universal equations of rescaled state variables (effective temperature, entropy and contact number as functions of volume fraction) for systems with different friction coefficients (μ = 0.52, 0.66 and 0.86), which suggests that frictional granular packings can be mapped directly to the frictionless hard-sphere system. In addition, we show that shear force barely affects the Edwards ensemble statistics, while its behaviour can be empirically explained by simply adding the contributions from particle structural rearrangements and frictional dissipation on contacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Macroscopic shear force and volume fraction behaviours.
Fig. 2: Relationships between thermodynamic variables in the Edwards ensemble for systems with different μ.
Fig. 3: Energy landscape correspondence between granular materials and frictionless hard-sphere systems.
Fig. 4: Relationships between the shear force and the microscopic processes.

Similar content being viewed by others

Data availability

All data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. de Gennes, P. G. Granular matter: a tentative view. Rev. Mod. Phys. 71, 374–382 (1999).

    Article  Google Scholar 

  2. Andreotti B., Forterre, Y. & Pouliquen, O. Granular Media: Between Fluid and Solid (Cambridge Univ. Press, 2013).

  3. Schofield, A. & Wroth, P. Critical State Soil Mechanics (McGraw-Hill, 1968).

  4. Mesarovic, S. D., Padbidri, J. M. & Muhunthan, B. Micromechanics of dilatancy and critical state in granular matter. Géotech. Lett. 2, 61–66 (2012).

    Article  Google Scholar 

  5. Onoda, G. Y. & Liniger, E. G. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990).

    Article  ADS  Google Scholar 

  6. Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).

    Article  ADS  Google Scholar 

  7. Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020 (1997).

    Article  ADS  Google Scholar 

  8. Falk, M. L. & Langer, J. S. Deformation and failure of amorphous, solidlike materials. Annu. Rev. Condens. Matter Phys. 2, 353–373 (2011).

    Article  ADS  Google Scholar 

  9. Haxton, T. K. & Liu, A. J. Activated dynamics and effective temperature in a steady state sheared glass. Phys. Rev. Lett. 99, 195701 (2007).

    Article  ADS  Google Scholar 

  10. Kou, B. et al. Granular materials flow like complex fluids. Nature 551, 360–363 (2017).

    Article  ADS  Google Scholar 

  11. Wang, D., Ren, J., Dijksman, J. A., Zheng, H. & Behringer, R. P. Microscopic origins of shear jamming for 2D frictional grains. Phys. Rev. Lett. 120, 208004 (2018).

    Article  ADS  Google Scholar 

  12. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–358 (2011).

    Article  ADS  Google Scholar 

  13. Sun, J. & Sundaresan, S. A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech. 682, 590–616 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  14. da Cruz, F., Emam, S., Prochnow, M., Roux, J. N. & Chevoir, F. Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005).

    Article  ADS  Google Scholar 

  15. Rothenburg, L. & Kruyt, N. P. Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004).

    Article  Google Scholar 

  16. Puckett, J. G. & Daniels, K. E. Equilibrating temperature-like variables in jammed granular subsystems. Phys. Rev. Lett. 110, 058001 (2013).

    Article  ADS  Google Scholar 

  17. Henkes, S., O’Hern, C. S. & Chakraborty, B. Entropy and temperature of a static granular assembly: an ab initio approach. Phys. Rev. Lett. 99, 038002 (2007).

    Article  ADS  Google Scholar 

  18. Bi, D., Henkes, S., Daniels, K. E. & Chakraborty, B. The statistical physics of athermal materials. Annu. Rev. Condens. Matter Phys. 6, 63–83 (2015).

    Article  ADS  Google Scholar 

  19. Yuan, Y. et al. Experimental test of the Edwards volume ensemble for tapped granular packings. Phys. Rev. Lett. 127, 018002 (2021).

    Article  ADS  Google Scholar 

  20. Makse, H. A. & Kurchan, J. Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415, 614–617 (2002).

    Article  ADS  Google Scholar 

  21. Babu, V., Pan, D., Jin, Y., Chakraborty, B. & Sastry, S. Dilatancy, shear jamming, and a generalized jamming phase diagram of frictionless sphere packings. Soft Matter 17, 3121–3127 (2021).

    Article  ADS  Google Scholar 

  22. Song, C., Wang, P. & Makse, H. A. A phase diagram for jammed matter. Nature 453, 629–632 (2008).

    Article  ADS  Google Scholar 

  23. Briscoe, C., Song, C., Wang, P. & Makse, H. A. Entropy of jammed matter. Phys. Rev. Lett. 101, 188001 (2008).

    Article  ADS  Google Scholar 

  24. Pan, D., Ji, T., Baggioli, M., Li, L. & Jin, Y. L. Nonlinear elasticity, yielding, and entropy in amorphous solids. Sci. Adv. 8, eabm8028 (2022).

    Article  Google Scholar 

  25. Angelani, L. & Foffi, G. Configurational entropy of hard spheres. J. Phys. Condens. Matter 19, 256207 (2007).

    Article  ADS  Google Scholar 

  26. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P. & Zamponi, F. Fractal free energy landscapes in structural glasses. Nat. Commun. 5, 3725 (2014).

    Article  ADS  Google Scholar 

  27. Vinutha, H. A. & Sastry, S. Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12, 578–583 (2016).

    Article  Google Scholar 

  28. Xia, C. et al. The structural origin of the hard-sphere glass transition in granular packing. Nat. Commun. 6, 8409 (2015).

    Article  ADS  Google Scholar 

  29. Kumar, N. & Luding, S. Memory of jamming–multiscale models for soft and granular matter. Granul. Matter 18, 58 (2016).

    Article  Google Scholar 

  30. Zhang, J. et al. Unifying fluctuation-dissipation temperatures of slow-evolving nonequilibrium systems from the perspective of inherent structures. Sci. Adv. 7, eabg6766 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  31. Jin, Y. & Yoshino, H. A jamming plane of sphere packings. Proc. Natl Acad. Sci. USA 118, e2021794118 (2021).

  32. Parisi, G. & Zamponi, F. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 82, 789–845 (2010).

    Article  ADS  Google Scholar 

  33. Xing, Y. et al. X-ray tomography investigation of cyclically sheared granular materials. Phys. Rev. Lett. 126, 048002 (2021).

    Article  ADS  Google Scholar 

  34. Cao, Y. et al. Structural and topological nature of plasticity in sheared granular materials. Nat. Commun. 9, 2911 (2018).

    Article  ADS  Google Scholar 

  35. Zhang, L. & Thornton, C. A numerical examination of the direct shear test. Geotechnique 57, 343–354 (2007).

    Article  Google Scholar 

  36. Koumakis, N., Laurati, M., Egelhaaf, S. U., Brady, J. F. & Petekidis, G. Yielding of hard-sphere glasses during start-up shear. Phys. Rev. Lett. 108, 098303 (2012).

    Article  ADS  Google Scholar 

  37. Aste, T., Saadatfar, M. & Senden, T. J. Geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061302 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China no. 11974240 (Y.X., H.Y., S.Z. and Y.W.) and no. 11904102 (C.X.); the Science and Technology Innovation Foundation of Shanghai Jiao Tong University no. 21X010200829 (Y.X., Y.Y., H.Y., S.Z., Z.Z. and Y.W.); the China Postdoctoral Science Foundation no. 2021M702151 (Y.Y.); and the Science and Technology Commission of Shanghai Municipality no. 22YF1419900 (Y.W.).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed the research. Y.X., Y.Y., H.Y., S.Z., Z.Z., X.Z., C.X. and Y.W. performed the experiment. Y.X., C.X. and Y.W. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Chengjie Xia or Yujie Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2.

Source data

Source Data Fig. 1

Data accompanying Fig. 1.

Source Data Fig. 2

Data accompanying Fig. 2.

Source Data Fig. 4

Data accompanying Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Yuan, Y., Yuan, H. et al. Origin of the critical state in sheared granular materials. Nat. Phys. 20, 646–652 (2024). https://doi.org/10.1038/s41567-023-02353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02353-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing