Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heavy-tailed neuronal connectivity arises from Hebbian self-organization

Abstract

The connections in networks of neurons are heavy-tailed, with a small number of neurons connected much more strongly than the vast majority of pairs. However, it remains unclear whether this heavy-tailed connectivity emerges from simple underlying mechanisms. Here we propose a minimal model of synaptic self-organization: connections are pruned at random, and the synaptic strength rearranges under a mixture of preferential and random dynamics. Under these generic rules, networks evolve to produce distributions of connectivity strength that are asymptotically scale-free, with a power-law exponent that depends only on the probability of preferential (rather than random) growth. Extending our model to include neuronal activity and Hebbian plasticity, we find that clustering in the network also emerges naturally. We confirm these predictions in the connectomes of several animals, suggesting that heavy-tailed and clustered connectivity may arise from general principles of network self-organization rather than mechanisms specific to individual species or systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heavy-tailed connectivity in neuronal connectomes.
Fig. 2: Preferential growth produces scale-free connection strengths.
Fig. 3: Activity-dependent dynamics give rise to network clustering.
Fig. 4: Capturing heavy-tailed and clustered connectivity in real connectomes.

Similar content being viewed by others

Data availability

The neuronal data analysed in this paper are openly available at github.com/ChrisWLynn/Heavy_tailed_connectivity.

Code availability

The code used to perform the analyses in this paper is openly available at github.com/ChrisWLynn/Heavy_tailed_connectivity.

References

  1. Ho, V. M., Lee, J.-A. & Martin, K. C. The cell biology of synaptic plasticity. Science 334, 623–628 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    CAS  PubMed  Google Scholar 

  3. Gómez-Palacio-Schjetnan, A. & Escobar, M. L. Neurotrophins and synaptic plasticity. Curr. Top. Behav. Neurosci. 15, 117–136 (2013).

    PubMed  Google Scholar 

  4. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    PubMed  PubMed Central  Google Scholar 

  5. Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Feldmeyer, D., Egger, V., Lübke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J. Physiol. 521, 169–190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lefort, S., Tomm, C., Sarria, J.-C. F. & Petersen, C. C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    CAS  PubMed  Google Scholar 

  8. Ikegaya, Y. et al. Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. Cereb. Cortex 23, 293–304 (2013).

    PubMed  Google Scholar 

  9. Loewenstein, Y., Kuras, A. & Rumpel, S. Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J. Neurosci. 31, 9481–9488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lynn, C. W. & Bassett, D. S. The physics of brain network structure, function and control. Nat. Rev. Phys. 1, 318 (2019).

    Google Scholar 

  11. Dorkenwald, S. et al. Binary and analog variation of synapses between cortical pyramidal neurons. eLife 11, e76120 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kornfeld, J. et al. An anatomical substrate of credit assignment in reinforcement learning. Preprint at bioRxiv https://doi.org/10.1101/2020.02.18.954354 (2020).

  13. Farashahi, S. et al. Metaplasticity as a neural substrate for adaptive learning and choice under uncertainty. Neuron 94, 401–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, W. & Südhof, T. C. A neural circuit for memory specificity and generalization. Science 339, 1290–1295 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mei-ling, A. J. & Griffith, L. C. CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning. J. Neurosci. 17, 9384–9391 (1997).

    Google Scholar 

  16. Lei, Z., Henderson, K. & Keleman, K. A neural circuit linking learning and sleep in Drosophila long-term memory. Nat. Commun. 13, 609 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Almeida, R., Barbosa, J. & Compte, A. Neural circuit basis of visuo-spatial working memory precision: a computational and behavioral study. J. Neurophysiol. 114, 1806–1818 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).

    ADS  CAS  PubMed  Google Scholar 

  19. Takemura, S.-Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murthy, M., Fiete, I. & Laurent, G. Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59, 1009–1023 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18, 1067–1076 (2015).

    CAS  PubMed  Google Scholar 

  22. Song, Y.-H. et al. A neural circuit for auditory dominance over visual perception. Neuron 93, 940–954 (2017).

    CAS  PubMed  Google Scholar 

  23. Sokolowski, M. B. Social interactions in “simple” model systems. Neuron 65, 780–794 (2010).

    CAS  PubMed  Google Scholar 

  24. Tootoonian, S., Coen, P., Kawai, R. & Murthy, M. Neural representations of courtship song in the Drosophila brain. J. Neurosci. 32, 787–798 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Randel, N. et al. Neuronal connectome of a sensory–motor circuit for visual navigation. eLife 3, e02730 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Yamada, T. et al. Sensory experience remodels genome architecture in neural circuit to drive motor learning. Nature 569, 708–713 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piggott, B. J., Liu, J., Feng, Z., Wescott, S. A. & Xu, X. S. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 147, 922–933 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Helmstaedter, M. Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat. Methods 10, 501–507 (2013).

    CAS  PubMed  Google Scholar 

  30. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    ADS  CAS  Google Scholar 

  31. Butz, M., Wörgötter, F. & van Ooyen, A. Activity-dependent structural plasticity. Brain Res. Rev. 60, 287–305 (2009).

    PubMed  Google Scholar 

  32. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dorogovtsev, S. N. & Mendes, J. F. Evolution of networks. Adv. Phys. 51, 1079–1187 (2002).

    ADS  Google Scholar 

  34. Lynn, C. W., Holmes, C. M. & Palmer, S. E. Emergent scale-free networks. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.06453 (2022).

  35. Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    CAS  PubMed  Google Scholar 

  36. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    CAS  PubMed  Google Scholar 

  37. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).

    ADS  CAS  PubMed  Google Scholar 

  38. Lynn, C. W., Papadopoulos, L., Kahn, A. E. & Bassett, D. S. Human information processing in complex networks. Nat. Phys. 16, 965–973 (2020).

    CAS  Google Scholar 

  39. Lynn, C. W. & Bassett, D. S. Quantifying the compressibility of complex networks. Proc. Natl Acad. Sci. USA 118, e2023473118 (2021).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    CAS  PubMed  Google Scholar 

  41. Bianconi, G. Mean field solution of the Ising model on a Barabási–Albert network. Phys. Lett. A 303, 166–168 (2002).

    ADS  MathSciNet  CAS  Google Scholar 

  42. Lynn, C. W. & Lee, D. D. in Advances in Neural Information Processing Systems (eds Lee, D. et al.) 2495–2503 (2016).

  43. Aguilera, M., Moosavi, S. A. & Shimazaki, H. A unifying framework for mean-field theories of asymmetric kinetic Ising systems. Nat. Commun. 12, 1197 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tkačik, G. et al. Searching for collective behavior in a large network of sensory neurons. PLoS Comput. Biol. 10, e1003408 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Kim, J. Z., Lu, Z., Nozari, E., Pappas, G. J. & Bassett, D. S. Teaching recurrent neural networks to infer global temporal structure from local examples. Nat. Mach. Intell. 3, 316–323 (2021).

    Google Scholar 

  47. Bentley, B. et al. The multilayer connectome of Caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stiso, J. & Bassett, D. S. Spatial embedding imposes constraints on neuronal network architectures. Trends Cogn. Sci. 22, 1127–1142 (2018).

    PubMed  Google Scholar 

  50. Morrison, A., Aertsen, A. & Diesmann, M. Spike-timing-dependent plasticity in balanced random networks. Neural Comput. 19, 1437–1467 (2007).

    MathSciNet  PubMed  Google Scholar 

  51. Effenberger, F., Jost, J. & Levina, A. Self-organization in balanced state networks by STDP and homeostatic plasticity. PLoS Comput. Biol. 11, e1004420 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  52. Yang, G., Pan, F. & Gan, W.-B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oh, W. C., Hill, T. C. & Zito, K. Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc. Natl Acd. Sci. USA 110, E305–E312 (2013).

    ADS  CAS  Google Scholar 

  54. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).

    CAS  PubMed  Google Scholar 

  55. Mitchell, S. M., Lange, S. & Brus, H. Gendered citation patterns in international relations journals. Int. Stud. Perspect. 14, 485–492 (2013).

    Google Scholar 

  56. Dion, M. L., Sumner, J. L. & Mitchell, S. M. Gendered citation patterns across political science and social science methodology fields. Polit. Anal. 26, 312–327 (2018).

    Google Scholar 

  57. Caplar, N., Tacchella, S. & Birrer, S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 1, 0141 (2017).

    ADS  Google Scholar 

  58. Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23, 918–926 (2020).

    CAS  PubMed  Google Scholar 

  59. Bertolero, M. A. et al. Racial and ethnic imbalance in neuroscience reference lists and intersections with gender. Preprint at bioRxiv https://doi.org/10.1101/2020.10.12.336230 (2020).

  60. Teich, E. G. et al. Citation inequity and gendered citation practices in contemporary physics. Nat. Phys. 18, 1161–1170 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. J. Schwab and L. Papadopoulos for discussions and feedback and P. Kratsios for help with illustrations. This work was supported in part by the National Science Foundation, through the Center for the Physics of Biological Function (PHY–1734030) and a Graduate Research Fellowship (C.M.H.); by the James S. McDonnell Foundation through a Postdoctoral Fellowship Award (C.W.L.); and by the National Institutes of Health BRAIN initiative (R01EB026943).

Author information

Authors and Affiliations

Authors

Contributions

C.W.L. and S.E.P. conceived the project. C.W.L. designed the models, and C.W.L. and C.M.H. performed the analysis with input from S.E.P. C.W.L. wrote the paper and Supplementary Information, and C.M.H. and S.E.P. edited the paper and Supplementary Information.

Corresponding author

Correspondence to Christopher W. Lynn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Manfred Kitzbichler, Dietmar Plenz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynn, C.W., Holmes, C.M. & Palmer, S.E. Heavy-tailed neuronal connectivity arises from Hebbian self-organization. Nat. Phys. 20, 484–491 (2024). https://doi.org/10.1038/s41567-023-02332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02332-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing