Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bipolarity of large anomalous Nernst effect in Weyl magnet-based alloy films

Abstract

A thermopile device converts thermal energy to electrical energy. Controlling the polarity of the thermoelectric voltage that such a device generates is an important part of enhancing its thermoelectric output. Constructing thermopile devices where the mechanism is based on the anomalous Nernst effect in topological magnets and where one can control the bipolarity is still hard to do. Here we demonstrate the bipolarity of a large anomalous Nernst effect in a series of Weyl ferromagnet Co3Sn2S2-based alloy films by tuning the Fermi energy. We illustrate the bipolarity of the anomalous Nernst signal originating from the intrinsic Berry curvature contribution by systematically regulating the Fermi energy by nickel or indium substitution while maintaining a topological band feature of the Weyl ferromagnet. The bipolarity enables the construction of the Weyl magnet-based anomalous Nernst thermopile that generates large thermoelectric output at zero magnetic field. These demonstrations of bipolar large anomalous Nernst effect in Co3Sn2S2-based films will stimulate the device development of efficient thermoelectric energy conversion exploiting topological magnets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polarity of Seebeck effect and anomalous Nernst effect.
Fig. 2: Concept and experimental verification of Weyl feature in Co3Sn2S2 film.
Fig. 3: Bipolar large anomalous Nernst effect.
Fig. 4: Correlations of key parameters, SANE and Bc, guiding for stable device operation based on ANE under in-plane thermal gradient and zero magnetic field.
Fig. 5: Demonstration of zero-field thermopile operation based on Weyl magnet Co3Sn2S2-based alloy films.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

Computer codes used in this study are available from the corresponding author upon reasonable request.

References

  1. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Sakuraba, Y. Potential of thermoelectric power generation using anomalous Nernst effect in magnetic materials. Scrip. Mater. 111, 29–32 (2016).

    Article  CAS  Google Scholar 

  3. Uchida, K., Zhou, W. & Sakuraba, Y. Transverse thermoelectric generation using magnetic materials. Appl. Phys. Lett. 118, 140504 (2021).

    Article  CAS  ADS  Google Scholar 

  4. Fu, C., Sun, Y. & Felser, C. Topological thermoelectrics. APL Mater. 8, 040913 (2020).

    Article  CAS  ADS  Google Scholar 

  5. Uchida, K. & Heremans, J. P. Thermoelectrics: from longitudinal to transverse. Joule 6, 2240–2245 (2022).

    Article  Google Scholar 

  6. Xiao, D., Yao, Y., Fang, Z. & Niu, Q. Berry-phase effect in anomalous thermoelectric transport. Phys. Rev. Lett. 97, 026603 (2006).

    Article  PubMed  ADS  Google Scholar 

  7. Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  9. Sakuraba, Y. et al. Anomalous Nernst effect in L10-FePt/MnGa thermopiles for new thermoelectric applications. Appl. Phys. Express 6, 033003 (2013).

    Article  ADS  Google Scholar 

  10. Mizuguchi, M. & Nakatsuji, S. Energy-harvesting materials based on the anomalous Nernst effect. Sci. Technol. Adv. Mater. 20, 262–275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article  CAS  Google Scholar 

  13. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  14. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012).

    Article  CAS  Google Scholar 

  16. Guo, M. et al. Ambi-polar anomalous Nernst effect in a magnetic topological insulator. N. J. Phys. 19, 113009 (2017).

    Article  Google Scholar 

  17. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    Article  CAS  Google Scholar 

  18. Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, eabf1467 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Nakayama, H. et al. Mechanism of strong enhancement of anomalous Nernst effect in Fe by Ga substitution. Phys. Rev. Mater. 3, 114412 (2019).

    Article  CAS  Google Scholar 

  20. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Zhou, W. & Sakuraba, Y. Heat flux sensing by anomalous Nernst effect in Fe-Al thin films on a flexible substrate. Appl. Phys. Express 13, 043001 (2020).

    Article  CAS  ADS  Google Scholar 

  22. Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, eabk1480 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Pan, Y. et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nat. Mater. 21, 203–209 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic Kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).

    Article  MathSciNet  Google Scholar 

  25. Ding, L. et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Phys. Rev. X 9, 041061 (2019).

    CAS  Google Scholar 

  26. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  28. Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagome crystal. Science 365, 1282–1285 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Yanagi, Y. et al. First-principles investigation of magnetic and transport properties in hole-doped shandite compounds Co3InxSn2-xS2. Phys. Rev. B 103, 205112 (2021).

    Article  CAS  ADS  Google Scholar 

  31. Schnelle, W. et al. Ferromagnetic ordering and half-metallic state of Sn2Co3S2 with the shandite-type structure. Phys. Rev. B 88, 144404 (2013).

    Article  ADS  Google Scholar 

  32. Ozawa, A. & Nomura, K. Two-orbital effective model for magnetic Weyl semimetal in kagome-lattice shandite. J. Phys. Soc. Jpn. 88, 123703 (2019).

    Article  ADS  Google Scholar 

  33. Fujiwara, K. et al. Ferromagnetic Co3Sn2S2 thin films fabricated by co-sputtering. Jpn. J. Appl. Phys. 58, 050912 (2019).

    Article  CAS  ADS  Google Scholar 

  34. Lau, Y.-C. et al. Intercorrelated anomalous Hall and spin Hall effect in kagome-lattice Co3Sn2S2-based shandite films. Phys. Rev. B 108, 064429 (2023).

    Article  CAS  ADS  Google Scholar 

  35. Kassem, M. A., Tabata, Y., Waki, T. & Nakamura, H. Single crystal growth and characterization of kagome-lattice shandites Co3Sn2-xInxS2. J. Cryst. Growth 426, 208–213 (2015).

    Article  CAS  ADS  Google Scholar 

  36. Zhou, H. et al. Enhanced anomalous Hall effect in the magnetic topological semimetal Co3Sn2-xInxS2. Phys. Rev. B 101, 125121 (2020).

    Article  CAS  ADS  Google Scholar 

  37. Thakur, G. S. et al. Intrinsic anomalous Hall effect in Ni-substituted magnetic Weyl semimetal Co3Sn2S2. Chem. Mater. 32, 1612–1617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen, J. et al. Local disorder-induced elevation of intrinsic anomalous Hall conductance in an electron-doped magnetic Weyl semimetal. Phys. Rev. Lett. 125, 086602 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Ikeda, J. et al. Critical thickness for the emergence of Weyl features in Co3Sn2S2 thin films. Commun. Mater. 2, 18 (2021).

    Article  CAS  Google Scholar 

  40. Suemune, Y. Thermal conductivity of BaTiO3 and SrTiO3 from 4.5o to 300 oK. J. Phys. Soc. Jpn. 20, 174–175 (1965).

  41. Shiogai, J. et al. Robust perpendicular magnetic anisotropy of Co3Sn2S2 phase in sulfur deficient sputtered thin films. Phys. Rev. Mater. 5, 024403 (2021).

    Article  CAS  Google Scholar 

  42. Liu, J. et al. Tuning the anomalous Nernst and Hall effects with shifting the chemical potential in Fe-dope and Ni-doped Co3Sn2S2. J. Phys. Condens. Matter 35, 375501 (2023).

    Article  ADS  Google Scholar 

  43. Miura, A. et al. Observation of anomalous Ettingshausen effect and large transverse thermoelectric conductivity in permanent magnet. Appl. Phys. Lett. 115, 222403 (2019).

    Article  ADS  Google Scholar 

  44. Shiogai, J. et al. Electrical detection of domain evolution in magnetic Weyl semimetal Co3Sn2S2 submicrometer-wide wire devices. Phys. Rev. Mater. 6, 114203 (2022).

    Article  CAS  Google Scholar 

  45. Natarajan, S., Rao, G. V. S., Baskaran, R. & Radhakrishnan, T. S. Synthesis and electrical properties of shandite-parkerite phases, A3M3Ch2. J. Less-Common Met. 138, 215–224 (1988).

    Article  CAS  Google Scholar 

  46. Broker, W. S., Parker, H. S. & Roth, R. S. Reexamination of synthetic parkerite and shandite. Am. Mineral. 59, 296–301 (1974).

    Google Scholar 

  47. Rothballer, J., Bachhuber, F., Rommel, S. M., Sohnel, T. & Weihrich, R. Origin and effect of In-Sn ordering in InSnCo3S2: a neutron diffraction and DFT study. RSC Adv. 4, 42183–42189 (2014).

    Article  CAS  ADS  Google Scholar 

  48. Cusack, N. & Kendall, P. The absolute scale of thermoelectric power at high temperature. Proc. Phys. Soc. 72, 898–901 (1958).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Nishimura and J. Shiogai for fruitful discussion about the measurement setup for magneto-thermoelectric properties and the NEOARK Corporation for the use of a maskless lithography system PALET. This work was supported by JSPS KAKENHI (Grant Nos. 22H00288, A.T.; 21H01789, M.-T.S.; 21H04437, M.-T.S.; 19H01842, M.-T.S.; 20K05299, Y.Y.; and 21H01031, Y.Y.), JST ERATO (Grant No. JPMJER2201, K.U.) and JST CREST (Grant No. JPMJCR18T2, A.T.).

Author information

Authors and Affiliations

Authors

Contributions

K.F. grew the thin films. S.N. and K.F. prepared the sample for thermoelectric measurements. S.N. carried out the electrical and thermoelectric measurements with support from K.F. Magnetization measurement was carried out by K.F. and T.S. Calibration of the measurement setup for the Seebeck effect was carried out by T.H., K.U. and K.F. First-principle band calculation was carried out by Y.Y. and M.-T.S. S.N., K.F. and A.T. wrote the draft. All the authors discussed the results and commented on the manuscript. K.F. and A.T. conceived the project.

Corresponding author

Correspondence to Kohei Fujiwara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Table 1 and references.

Source data

Source Data Fig. 2

Energy distributions of anomalous Hall conductivity and anomalous Nernst conductivity, magnetic field dependences of magnetization and Hall conductivity at T = 150 K, and magnetic field dependences of Nernst coefficient at various temperatures.

Source Data Fig. 3

Magnetic field dependences of Hall resistivity and Nernst coefficient for various compositions and composition dependences of anomalous Hall conductivity and anomalous component of Nernst coefficient at T = 100 K.

Source Data Fig. 4

Anomalous component of Nernst coefficients in literature and this study.

Source Data Fig. 5

Magnetic field, connection number, and temperature dependences of thermoelectric voltage.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noguchi, S., Fujiwara, K., Yanagi, Y. et al. Bipolarity of large anomalous Nernst effect in Weyl magnet-based alloy films. Nat. Phys. 20, 254–260 (2024). https://doi.org/10.1038/s41567-023-02293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02293-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing