Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collisionally stable gas of bosonic dipolar ground-state molecules

Abstract

Stable ultracold ensembles of dipolar molecules hold great promise for studies of many-body quantum physics, but high inelastic loss rates have been a long-standing challenge. Recently, gases of fermionic molecules in their ground state have been effectively stabilized by applying external fields. However, for gases of bosonic molecules, which might provide access to fundamentally different many-body quantum systems, it is unknown whether a similar suppression of losses can be achieved. This is due to the high inelastic loss rates for bosonic molecules, which are intrinsically one to two orders of magnitude larger than those for their fermionic counterparts. Here we stabilize a bosonic gas of strongly dipolar NaCs molecules via microwave shielding, decreasing losses by more than a factor of 200 and reaching lifetimes on the order of 1 second. In addition, we measure high elastic scattering rates and characterize their anisotropy, which arises from strong dipolar interactions. Finally, we demonstrate evaporative cooling of a bosonic molecular gas. We increase the phase-space density by a factor of 20, reach a temperature of 36(5) nK and bring the system to the brink of quantum degeneracy. Our results constitute a step towards the creation of a Bose–Einstein condensate of dipolar molecules and open the door to the creation of strongly correlated phases of dipolar quantum matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microwave shielding of NaCs molecules.
Fig. 2: Lifetime and inelastic collisions of microwave-shielded NaCs molecules.
Fig. 3: Elastic collisions of microwave-shielded NaCs molecules.
Fig. 4: Evaporation of microwave-dressed molecules at Ω/(2π) = 4 MHz and Δ/(2π) = 6 MHz.

Similar content being viewed by others

Data availability

The experimental data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

All relevant codes are available from the corresponding author upon reasonable request.

References

  1. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).

    ADS  Google Scholar 

  2. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    ADS  Google Scholar 

  3. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  Google Scholar 

  4. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  5. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Google Scholar 

  6. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).

    ADS  Google Scholar 

  7. Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).

    ADS  Google Scholar 

  8. Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259–262 (2016).

    ADS  Google Scholar 

  9. Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    ADS  Google Scholar 

  10. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Google Scholar 

  11. Schauß, P. et al. Crystallization in Ising quantum magnets. Science 347, 1455–1458 (2015).

    ADS  Google Scholar 

  12. Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016).

    ADS  Google Scholar 

  13. Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).

    ADS  Google Scholar 

  14. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS  Google Scholar 

  15. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Google Scholar 

  16. Wang, D.-W., Lukin, M. D. & Demler, E. Quantum fluids of self-assembled chains of polar molecules. Phys. Rev. Lett. 97, 180413 (2006).

    ADS  Google Scholar 

  17. Cooper, N. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).

    ADS  Google Scholar 

  18. Trefzger, C., Menotti, C. & Lewenstein, M. Pair-supersolid phase in a bilayer system of dipolar lattice bosons. Phys. Rev. Lett. 103, 035304 (2009).

    ADS  Google Scholar 

  19. Schmidt, M., Lassablière, L., Quéméner, G. & Langen, T. Self-bound dipolar droplets and supersolids in molecular Bose–Einstein condensates. Phys. Rev. Res. 4, 013235 (2022).

    Google Scholar 

  20. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    ADS  Google Scholar 

  21. Rabl, P. & Zoller, P. Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing. Phys. Rev. A 76, 042308 (2007).

    ADS  Google Scholar 

  22. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    ADS  Google Scholar 

  23. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    ADS  Google Scholar 

  24. Julienne, P. S., Hanna, T. M. & Idziaszek, Z. Universal ultracold collision rates for polar molecules of two alkali-metal atoms. Phys. Chem. Chem. Phys. 13, 19114–19124 (2011).

    Google Scholar 

  25. Bause, R., Christianen, A., Schindewolf, A., Bloch, I. & Luo, X.-Y. Ultracold sticky collisions: theoretical and experimental status. J. Phys. Chem. A 127, 729–741 (2023).

    Google Scholar 

  26. Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Google Scholar 

  27. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  Google Scholar 

  28. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    ADS  Google Scholar 

  29. De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    ADS  Google Scholar 

  30. Avdeenkov, A. V., Kajita, M. & Bohn, J. L. Suppression of inelastic collisions of polar 1Σ state molecules in an electrostatic field. Phys. Rev. A 73, 022707 (2006).

    ADS  Google Scholar 

  31. Gorshkov, A. et al. Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett. 101, 073201 (2008).

    ADS  Google Scholar 

  32. González-Martínez, M. L., Bohn, J. L. & Quéméner, G. Adimensional theory of shielding in ultracold collisions of dipolar rotors. Phys. Rev. A 96, 032718 (2017).

    ADS  Google Scholar 

  33. Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules. Phys. Rev. Lett. 121, 163401 (2018).

    ADS  Google Scholar 

  34. Lassablière, L. & Quéméner, G. Controlling the scattering length of ultracold dipolar molecules. Phys. Rev. Lett. 121, 163402 (2018).

    ADS  Google Scholar 

  35. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    ADS  Google Scholar 

  36. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    ADS  Google Scholar 

  37. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    ADS  Google Scholar 

  38. Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).

    Google Scholar 

  39. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    ADS  Google Scholar 

  40. Dagdigian, P. J. & Wharton, L. Molecular beam electric deflection and resonance spectroscopy of the heteronuclear alkali dimers: 39K7Li, Rb7Li, 39K23Na, Rb23Na and 133Cs23Na. J. Chem. Phys. 57, 1487–1496 (1972).

    ADS  Google Scholar 

  41. Yan, Z. Z. et al. Resonant dipolar collisions of ultracold molecules induced by microwave dressing. Phys. Rev. Lett 125, 063401 (2020).

    ADS  Google Scholar 

  42. Bohn, J., Cavagnero, M. & Ticknor, C. Quasi-universal dipolar scattering in cold and ultracold gases. New J. Phys. 11, 055039 (2009).

    ADS  Google Scholar 

  43. Aikawa, K. et al. Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium. Phys. Rev. Lett. 113, 263201 (2014).

    ADS  Google Scholar 

  44. Davis, K. B., Mewes, M. O. & Ketterle, W. An analytical model for evaporative cooling of atoms. Appl. Phys. B 60, 155–159 (1995).

    ADS  Google Scholar 

  45. Wang, R. R. & Bohn, J. L. Thermal conductivity of an ultracold paramagnetic Bose gas. Phys. Rev. A 106, 023319 (2022).

    ADS  MathSciNet  Google Scholar 

  46. Wang, R. R. & Bohn, J. L. Thermoviscous hydrodynamics in nondegenerate dipolar Bose gases. Phys. Rev. A 106, 053307 (2022).

    ADS  MathSciNet  Google Scholar 

  47. Chen, X.-Y. et al. Field-linked resonances of polar molecules. Nature 614, 59–63 (2023).

    ADS  Google Scholar 

  48. Dutta, O. et al. Non-standard hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).

    ADS  Google Scholar 

  49. Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Google Scholar 

  50. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    ADS  Google Scholar 

  51. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    ADS  Google Scholar 

  52. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    ADS  Google Scholar 

  53. Lam, A. Z. et al. High phase-space density gas of NaCs Feshbach molecules. Phys. Rev. Res. 4, L022019 (2022).

    Google Scholar 

  54. Stevenson, I. et al. Ultracold gas of dipolar NaCs ground state molecules. Phys. Rev. Lett. 130, 113022 (2023).

    ADS  Google Scholar 

  55. Warner, C. Efficient pathway to NaCs ground state molecules. New J. Phys. 25, 053036 (2023).

    ADS  Google Scholar 

  56. Ketterle, W., Durfee, D. S. & Stamper-Kurn, D. Making, probing and understanding Bose–Einstein condensates. In Proc. International School of Physics “Enrico Fermi", Course CXL (Inguscio, M., Ketterle, W. & Salomon, C. eds.) 67–176 (IOS Press, 1999). Edited by M. Inguscio, W. Ketterle, C. Salomon (IOS Press, Amsterdam)

  57. Yuan, W. et al. A planar cloverleaf antenna for the creation of circularly polarized microwave fields. Preprint at arXiv https://doi.org/10.48550/arXiv.2306.14791 (2023).

  58. Warner, C. et al. Overlapping Bose–Einstein condensates of 23Na and 133Cs. Phys. Rev. A 104, 033302 (2021).

    ADS  Google Scholar 

  59. Olson, A. J., Niffenegger, R. J. & Chen, Y. P. Optimizing the efficiency of evaporative cooling in optical dipole traps. Phys. Rev. A 87, 053613 (2013).

    ADS  Google Scholar 

  60. Luiten, O., Reynolds, M. & Walraven, J. Kinetic theory of the evaporative cooling of a trapped gas. Phys. Rev. A 53, 381 (1996).

    ADS  Google Scholar 

  61. Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules with imperfectly circular polarization. Phys. Rev. A 100, 052704 (2019).

    ADS  Google Scholar 

  62. Wang, R. R. & Bohn, J. L. Anisotropic thermalization of dilute dipolar gases. Phys. Rev. A 103, 063320 (2021).

    ADS  MathSciNet  Google Scholar 

  63. Guéry-Odelin, D., Zambelli, F., Dalibard, J. & Stringari, S. Collective oscillations of a classical gas confined in harmonic traps. Phys. Rev. A 60, 4851–4856 (1999).

    ADS  Google Scholar 

  64. Monroe, C., Cornell, E. A., Sackett, C., Myatt, C. & Wieman, C. Measurement of Cs–Cs elastic scattering at T = 30 μk. Phys. Rev. Lett. 70, 414 (1993).

    ADS  Google Scholar 

  65. Wu, H. & Foot, C. J. Direct simulation of evaporative cooling. J. Phys. B 29, L321 (1996).

    ADS  Google Scholar 

  66. Bohn, J. L. & Jin, D. S. Differential scattering and rethermalization in ultracold dipolar gases. Phys. Rev. A 89, 022702 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Schindewolf, G. Quéméner and T. Hilker for helpful discussions, M. Lipson and J. Shabani for the loan of equipment and T. Yefsah for critical reading of the paper. This work was supported by an NSF CAREER Award (award no. 1848466), an ONR DURIP Award (award no. N00014-21-1-2721) and a Lenfest Junior Faculty Development Grant from Columbia University. C.W. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC). W.Y. acknowledges support from the Croucher Foundation. I.S. was supported by the Ernest Kempton Adams Fund. S.W. acknowledges additional support from the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the work presented in this paper. N.B., C.W., W.Y., S.Z. and I.S. carried out the experiments and improved the experimental set-up. T.K. performed the theoretical calculations. S.W. supervised the study. All authors contributed to the data analysis and writing of the paper.

Corresponding author

Correspondence to Sebastian Will.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Manuele Landini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Time-of-flight expansion of a gas of NaCs ground state molecules with shielding.

Time-of-flight expansion of a gas of ground state molecules with shielding at Ω/(2π) = 4 MHz, Δ/(2π) = 6 MHz. Upper (lower) panels correspond to the x (y) direction. Insets in the lower panels illustrate the experimental sequence. The fitted mean temperature is 290(10) nK.

Extended Data Fig. 2 Fitting an s-wave scattering length.

a, Comparison of experimentally extracted collision cross-section, assuming Ncol = 1, to the calculated ratio of the elastic cross-section and \({N}_{{{{\rm{col}}}}}^{{{{\rm{xz}}}}}\). Solid line corresponds to as = 1200 a0 while the dashed line is obtained directly from our coupled-channels calculations. The error bars provided are the 1σ error from the fit of the thermalization curves. b, Comparison of calculated \({N}_{{{{\rm{col}}}}}^{{{{\rm{xz}}}}}\) for as = 1200 a0, orange solid line, and \({a}_{s}=\bar{a}\), orange dashed line. The black dashed line marks Ncol = 2.5.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Discussion.

Source data

Source Data

Data for plots in Figs. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigagli, N., Warner, C., Yuan, W. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579–1584 (2023). https://doi.org/10.1038/s41567-023-02200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02200-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing