Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-reversal-based quantum metrology with many-body entangled states

Abstract

Linear quantum measurements with independent particles are bounded by the standard quantum limit, which limits the precision achievable in estimating unknown phase parameters. The standard quantum limit can be overcome by entangling the particles, but the sensitivity is often limited by the final state readout, especially for complex entangled many-body states with non-Gaussian probability distributions. Here, by implementing an effective time-reversal protocol in an optically engineered many-body spin Hamiltonian, we demonstrate a quantum measurement with non-Gaussian states with performance beyond the limit of the readout scheme. This signal amplification through a time-reversed interaction achieves the greatest phase sensitivity improvement beyond the standard quantum limit demonstrated to date in any full Ramsey interferometer. These results open the field of robust time-reversal-based measurement protocols offering precision not too far from the Heisenberg limit. Potential applications include quantum sensors that operate at finite bandwidth, and the principle we demonstrate may also advance areas such as quantum engineering, quantum measurements and the search for new physics using optical-transition atomic clocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Setup and sequence.
Fig. 2: The state evolution during the SATIN sequence.
Fig. 3: Signal amplification and metrological gain.
Fig. 4: The scaling of the sensitivity with the atom number and a comparison with previous results.

Similar content being viewed by others

Data availability

The datasets generated and analysed during this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Takano, T., Fuyama, M., Namiki, R. & Takahashi, Y. Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. Phys. Rev. Lett. 102, 033601 (2009).

    Article  ADS  Google Scholar 

  2. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. U. S. A. 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  3. Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

    Article  ADS  Google Scholar 

  4. Hamley, C. D., Gerving, C., Hoang, T., Bookjans, E. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012).

    Article  Google Scholar 

  5. Berrada, T. et al. Integrated Mach–Zehnder interferometer for Bose–Einstein condensates. Nat. Commun. 4, 1–8 (2013).

    Article  Google Scholar 

  6. Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose–Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    Article  ADS  Google Scholar 

  7. Schmied, R. et al. Bell correlations in a Bose–Einstein condensate. Science 352, 441–444 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    Article  ADS  Google Scholar 

  9. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article  ADS  MATH  Google Scholar 

  10. Hosten, O., Krishnakumar, R., Engelsen, N. J. & Kasevich, M. A. Quantum phase magnification. Science 352, 1552–1555 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Braverman, B. et al. Near-unitary spin squeezing in 171Yb. Phys. Rev. Lett. 122, 223203 (2019).

    Article  ADS  Google Scholar 

  13. Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).

    Article  ADS  Google Scholar 

  14. Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article  ADS  Google Scholar 

  15. Kruse, I. et al. Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett. 117, 143004 (2016).

    Article  ADS  Google Scholar 

  16. Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  17. Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    Article  ADS  Google Scholar 

  18. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  19. Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986).

    Article  ADS  Google Scholar 

  20. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  ADS  Google Scholar 

  21. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article  ADS  Google Scholar 

  22. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996).

    Article  ADS  Google Scholar 

  23. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  24. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  25. Saffman, M., Oblak, D., Appel, J. & Polzik, E. S. Spin squeezing of atomic ensembles by multicolor quantum nondemolition measurements. Phys. Rev. A 79, 023831 (2009).

    Article  ADS  Google Scholar 

  26. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article  ADS  Google Scholar 

  27. Fröwis, F., Sekatski, P. & Dür, W. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    Article  ADS  Google Scholar 

  29. Toscano, F., Dalvit, D. A. R., Davidovich, L. & Zurek, W. H. Sub-Planck phase-space structures and Heisenberg-limited measurements. Phys. Rev. A 73, 023803 (2006).

    Article  ADS  Google Scholar 

  30. Nolan, S. P., Szigeti, S. S. & Haine, S. A. Optimal and robust quantum metrology using interaction-based readouts. Phys. Rev. Lett. 119, 193601 (2017).

    Article  ADS  Google Scholar 

  31. Macrì, T., Smerzi, A. & Pezzè, L. Loschmidt echo for quantum metrology. Phys. Rev. A 94, 010102 (2016).

    Article  ADS  Google Scholar 

  32. Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014).

    Article  ADS  Google Scholar 

  33. Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2016).

    Article  ADS  Google Scholar 

  34. Barontini, G., Hohmann, L., Haas, F., Estève, J. & Reichel, J. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics. Science 349, 1317–1321 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

    Article  ADS  Google Scholar 

  36. Gilmore, K. A. et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).

    Article  ADS  Google Scholar 

  37. Bohnet, J. G. et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nat. Photonics 8, 731–736 (2014).

    Article  ADS  Google Scholar 

  38. Nicholson, T. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 6, 6896 (2015).

  39. Escher, B., de Matos Filho, R. & Davidovich, L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011).

    Article  Google Scholar 

  40. Demkowicz-Dobrzański, R., Kołodyński, J. & Guţă, M. The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012).

    Article  ADS  Google Scholar 

  41. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  42. Safronova, M. S. The search for variation of fundamental constants with clocks. Ann. Phys. 531, 1800364 (2019).

    Article  Google Scholar 

  43. Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    Article  Google Scholar 

  44. Arvanitaki, A., Huang, J. & Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015).

    Article  ADS  Google Scholar 

  45. Wcislo, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    Article  ADS  Google Scholar 

  46. Stadnik, Y. & Flambaum, V. Axion-induced effects in atoms, molecules, and nuclei: parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings. Phys. Rev. D 89, 043522 (2014).

    Article  ADS  Google Scholar 

  47. Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    Article  ADS  Google Scholar 

  48. Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    Article  Google Scholar 

  49. Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 14, 411–415 (2020).

    Article  ADS  Google Scholar 

  50. Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article  ADS  Google Scholar 

  51. Kawasaki, A., Braverman, B., Yu, Q. & Vuletić, V. Two-color magneto-optical trap with small magnetic field for ytterbium. J. Phys. B 48, 155302 (2015).

    Article  ADS  Google Scholar 

  52. Kawasaki, A. et al. Trapping 171Yb atoms into a one-dimensional optical lattice with a small waist. Phys. Rev. A 102, 013114 (2020).

    Article  ADS  Google Scholar 

  53. Hu, J. et al. Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).

    Article  ADS  Google Scholar 

  54. Kawasaki, A. et al. Geometrically asymmetric optical cavity for strong atom–photon coupling. Phys. Rev. A 99, 013437 (2019).

    Article  ADS  Google Scholar 

  55. Lee, J., Vrijsen, G., Teper, I., Hosten, O. & Kasevich, M. A. Many-atom–cavity QED system with homogeneous atom–cavity coupling. Opt. Lett. 39, 4005–4008 (2014).

    Article  ADS  Google Scholar 

  56. Li, Z. et al. Collective spin-light and light-mediated spin-spin interactions in an optical cavity. Phys. Rev. X Quantum 3, 020308 (2022).

    ADS  Google Scholar 

  57. Schulte, M., Martínez-Lahuerta, V. J., Scharnagl, M. S. & Hammerer, K. Ramsey interferometry with generalized one-axis twisting echoes. Quantum 4, 268 (2020).

    Article  Google Scholar 

  58. Pospelov, M. et al. Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013).

    Article  ADS  Google Scholar 

  59. Koczor, B., Zeier, R. & Glaser, S. J. Fast computation of spherical phase-space functions of quantum many-body states. Phys. Rev. A 102, 062421 (2020).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank B. Braverman, A. Kawasaki, M. Lukin and J. Ye for discussions. This work was supported by the NSF (grant no. PHY-1806765), DARPA (grant no. D18AC00037), ONR (grant no. N00014-20-1-2428), the NSF Center for Ultracold Atoms (CUA) (grant no. PHY-1734011) and NSF QLCI-CI QSEnSE (grant no. 2016244). S.C. and A.F.A. acknowledge support from the Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Authors

Contributions

S.C., E.P.-P., A.F.A. and Z.L. led the experimental efforts and simulations. S.C., E.P.-P., A.F.A. and Z.L. contributed to the data analysis. V.V. conceived and supervised the experiment. S.C., E.P.-P., A.F.A. and V.V. wrote the manuscript. All authors discussed the experimental implementation and the results, and contributed to the manuscript.

Corresponding author

Correspondence to Vladan Vuletić.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Rafal Demkowicz-Dobrzansk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental sequence.

The three stages of the experiment are represented in different color-shaded areas in the upper part: preparation, protocol, and detection. Bloch spheres (bottom) show the collective atomic state after the indicated process has been performed in time. The time axis is not to scale.

Extended Data Fig. 2 Single-atom cooperativity.

The dashed line represents the quadratic regression fit, with the prefactor of the linear term yielding the slope \(\eta (1+{\sigma }_\mathrm{meas}^{2})/4=2.2\pm 0.1\) and the quadratic term prefactor being consistent with zero (0 ± 3) × 10−4. The gray band denotes the expected projection noise given by the single-atom cooperativity calculated from our cavity parameters η = 7.8 ± 0.2. The linearity of the data indicates the classical sources of noise are negligible in the CSS state preparation, since they would manifest as a quadratic dependence of the measured variance on collective cooperativity Nη. Each data point corresponds to the mean value obtained from 50 to 150 experimental realizations. The error bars correspond to 1 σ and are the standard error of a Gaussian distribution: \({\sigma }_{s}^{2}/(n-1)\), where σs is the sample variance and n is the number of experimental realizations. Statistical horizontal error bars are smaller than the marker size.

Extended Data Fig. 3 Squeezed spin distribution on the generalized Bloch sphere.

The normalized shearing strength \(\tilde{Q}\) represents the angle subtended by the sheared distribution with respect to the x-axis, along which the initial CSS was prepared.

Extended Data Fig. 4 Relevant parameters for our squeezing protocol.

Excess broadening \({{{\mathcal{I}}}}\) (yellow dashed line) per scattered photon and shearing strength \(| \tilde{Q}|\) (solid line). The red and blue parts of the solid line represent positive and negative values of \(\tilde{Q}\), respectively, which lead to forward and backward evolution in time. The blue and red dashed lines represent the detuning, − 8 MHz and 8 MHz, chosen to generate \({\tilde{Q}}_{+}\) and \({\tilde{Q}}_{-}\), respectively. The duration of the entangling/disentangling pulses is about 4 ms. In this figure, we have used the experimental parameters N = 220 and η = 7.7. For illustration purposes, contrast loss has not been included.

Extended Data Fig. 5 SATIN contrast loss.

Contrast reduction in an optimized SATIN protocol as a function of the twisting strength \({\tilde{Q}}_{+}\). “Optimized SATIN” means that the entangling light detuning is chosen in order to maximize the protocol’s metrological gain. It is worth noting that, under this optimization condition, the contrast reduction is independent of the atom number.

Extended Data Fig. 6 Graphical representation of the model used to describe contrast loss due to scattering of photons into free space.

The atomic spin can be decomposed into the coherent signal (large Bloch sphere) and the signals of the sub-ensembles of atoms that due to photon scattering have been projected into the spin states \(\left|\uparrow \right\rangle\) or \(\left|\downarrow \right\rangle\), and that have lost any coherence. The radii of the generalized Bloch-spheres represent the relative populations of the states. The dashed circle indicates the size of the generalized Bloch sphere size with all spin being in the same pure state, i.e., in the absence of contrast losses. The left figure corresponds to \({\tilde{Q}}_{+}=0.3\) (mostly Gaussian distribution) while the right figure is calculated for \({\tilde{Q}}_{+}=1.3\).

Extended Data Fig. 7 Expected Metrological Gain in Optical Clocks.

Dashed lines represent fundamental quantum limits. Solid lines represent metrological gain versus atom number expected in our system with a short Ramsey time of 3.5 ms (black) and an atom loss rate of 0.1s−1., and in a state-of-the-art optical clock operated with a SATIN protocol for Ramsey times of 50 ms (red) and 1 s (blue). We notice that the transition between HS to SQL scaling occurs in the region of N = 4 × 104 and N = 300, respectively.

Source data

Source Data Fig. 2

Raw data for Fig. 2.

Source Data Fig. 3

Raw data for Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, S., Pedrozo-Peñafiel, E., Adiyatullin, A.F. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022). https://doi.org/10.1038/s41567-022-01653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01653-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing