Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3

Abstract

Spin liquid ground states are predicted to arise within several distinct scenarios in condensed matter physics. The observation of these disordered magnetic states is particularly pervasive among a class of materials known as frustrated magnets, in which the competition between various magnetic exchange interactions prevents the system from adopting long-range magnetic order at low temperatures. Spin liquids continue to be of great interest due to their exotic nature and the possibility that they may support fractionalized excitations, such as Majorana fermions. Systems that allow for such phenomena are not only fascinating from a fundamental perspective but may also be practically significant in future technologies based on quantum computation. Here we show that the underlying antiferromagnetic sublattice in TbInO3 can undergo a crystal field-induced distortion of its buckled triangular arrangement to one based on a honeycomb. The absence of a conventional magnetic ordering transition at the lowest measurable temperatures indicates that another critical mechanism must govern in the ground-state selection of TbInO3. We suggest that anisotropic exchange interactions—mediated through strong spin–orbit coupling on the emergent honeycomb lattice of TbInO3—give rise to a highly frustrated spin liquid.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structural and magnetic properties of TbInO3 from powder neutron diffraction and magnetic susceptibility data.
Fig. 2: Muon spin relaxation study of TbInO3 in zero field and applied longitudinal fields.
Fig. 3: Powder inelastic neutron scattering data for TbInO3.
Fig. 4: Magnetic diffuse neutron scattering from TbInO3.
Fig. 5: Temperature evolution of the magnetic sublattice in TbInO3.

Data availability

Raw powder neutron diffraction54 and muon spin relaxation data55 were collected on the HRPD, MuSR and EMu instruments at ISIS Neutron and Muon Facility and Rutherford Appleton Laboratory, UK, respectively. Powder inelastic neutron scattering data were collected on the SEQUOIA and CNCS instruments at the Spallation Neutron Source, Oak Ridge National Laboratory, USA56. All other raw and derived data used to support the findings of this study are available from the authors on request.

References

  1. 1.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Savary, L. & Balents, L. Quantum spin liquids. Rep. Prog. Phys. 80, 016502 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Yan, S. et al. Spin liquid ground state of the S=½ kagome Heisenberg model. Science 332, 1173–1176 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Fu, M. et al. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Science 350, 655–658 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Reger, J. D. et al. Monte Carlo simulations of the spin-½ Heisenberg antiferromagnet in two dimensions. J. Phys. Condens. Matter 1, 1855–1865 (1989).

    ADS  Article  Google Scholar 

  6. 6.

    Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    Chaloupka, J. et al. Kitaev–Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A 2IrO3. Phys. Rev. Lett. 105, 027204 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Sandilands, L. J. et al. Spin–orbit excitations and electronic structure of the putative Kitaev magnet α-RuCl3. Phys. Rev. B 93, 075144 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Shankar, V. V. et al. Kitaev magnetism in honeycomb α-RuCl3 with intermediate spin–orbit coupling. Phys. Rev. B 91, 241110 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Sandilands, L. J. et al. Scattering continuum and possible fractionalized excitations in α-RuCl3. Phys. Rev. Lett. 114, 147201 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Sears, J. A. et al. Magnetic order in α-RuCl3: a honeycomb-lattice quantum magnet with strong spin–orbit coupling. Phys. Rev. B 91, 144420 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Plumb, K. W. et al. α-RuCl3: a spin–orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112(R) (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Williams, S. C. et al. Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α-Li2IrO3. Phys. Rev. B 93, 195158 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Chun, S. H. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3. Nat. Phys. 11, 462–466 (2015).

    Article  Google Scholar 

  16. 16.

    Choi, S. K. et al. Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. Phys. Rev. Lett. 108, 127204 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and X-ray diffraction investigation of single-crystal Na2IrO3. Phys. Rev. B 85, 180403(R) (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Liu, X. et al. Long-range magnetic ordering in Na2IrO3. Phys. Rev. B 83, 220403(R) (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Singh, Y. & Gegenwart, P. Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3. Phys. Rev. B 82, 064412 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    ADS  Article  Google Scholar 

  21. 21.

    Castelnovo, C. et al. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    ADS  Article  Google Scholar 

  22. 22.

    Molavian, H. R. et al. Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects. Phys. Rev. Lett. 98, 157204 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Ross, K. A. et al. Quantum excitations in quantum spin ice. Phys. Rev. X 1, 021002 (2011).

    Google Scholar 

  24. 24.

    Princep, A. J. et al. Crystal-field states of Pr3+ in the candidate quantum spin ice Pr2Sn2O7. Phys. Rev. B 88, 104421 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Li, Y. et al. Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4. Phys. Rev. Lett. 115, 167203 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Paddison, J. A. M. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13, 117–122 (2017).

    Article  Google Scholar 

  27. 27.

    Mydosh, J. Disordered magnetism and spin glasses. J. Magn. Magn. Mater. 157, 606–610 (1996).

    ADS  Article  Google Scholar 

  28. 28.

    Aczel, A. A. et al. Spin-liquid ground state in the frustrated J 1J 2 zigzag chain system BaTb2O4. Phys. Rev. B 92, 041110(R) (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Pratt, F. L. Field dependence of μSR signals in a polycrystalline magnet. J. Phys. Condens. Matter 19, 456207 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    Uemura, Y. J. et al. Muon-spin relaxation in AuFe and CuMn spin glasses. Phys. Rev. B 31, 546–563 (1985).

    ADS  Article  Google Scholar 

  31. 31.

    Dunsiger, S. R. et al. Muon spin relaxation investigation of the spin dynamics of geometrically frustrated antiferromagnets Y2Mo2O7 and Tb2Mo2O7. Phys. Rev. B 54, 9019–9022 (1996).

    ADS  Article  Google Scholar 

  32. 32.

    Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb2Ti2O7. Phys. Rev. Lett. 82, 1012–1015 (1999).

    ADS  Article  Google Scholar 

  33. 33.

    Baker, P. J. et al. Muon-spin relaxation measurements on the dimerized spin-1/2 chains NaTiSi2O6 and TiOCl. Phys. Rev. B 75, 094404 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    Gardner, J. S. et al. Neutron scattering studies of the cooperative paramagnet pyrochlore Tb2Ti2O7. Phys. Rev. B 64, 224416 (2001).

    ADS  Article  Google Scholar 

  35. 35.

    Wills, A. S. et al. Short-range order in the topological spin glass (D3O)Fe3(SO4)2(OD)6 using xyz polarized neutron diffraction. Phys. Rev. B 64, 094436 (2001).

    ADS  Article  Google Scholar 

  36. 36.

    Chen, G. ‘Magnetic monopole’ condensation of the pyrochlore ice U(1) quantum spin liquid: application to Pr2Ir2O7 and Yb2Ti2O7. Phys. Rev. B 94, 205107 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Chen, G. Dirac’s ‘magnetic monopoles’ in pyrochlore ice U(1) spin liquids: spectrum and classification. Phys. Rev. B 96, 195127 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    ADS  Article  Google Scholar 

  39. 39.

    Regnault, L. P. et al. Magnetic properties of the layered nickel compounds BaNi2(PO4)2 and BaNi2(AsO4)2. J. Magn. Magn. Mater. 15-18, 1021–1022 (1980).

    ADS  Article  Google Scholar 

  40. 40.

    Rogado, N. et al. BaNi2V2O8: a two-dimensional honeycomb antiferromagnet. Phys. Rev. B 65, 144443 (2002).

    ADS  Article  Google Scholar 

  41. 41.

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    Li, F.-Y. et al. Kitaev materials beyond iridates: order by quantum disorder and Weyl magnons in rare-earth double perovskites. Phys. Rev. B 95, 085132 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Savary, L. et al. Order by quantum disorder in Er2Ti2O7. Phys. Rev. Lett. 109, 167201 (2012).

    ADS  Article  Google Scholar 

  44. 44.

    Fritsch, K. et al. Antiferromagnetic spin ice correlations at (½, ½, ½) in the ground state of the pyrochlore magnet Tb2Ti2O7. Phys. Rev. B 87, 094410 (2013).

    ADS  Article  Google Scholar 

  45. 45.

    Curnoe, S. H. Effective spin-1/2 exchange model for Tb2Ti2O7. Phys. Rev. B 88, 014429 (2013).

    ADS  Article  Google Scholar 

  46. 46.

    Takatsu, H. et al. Quadrupolar order in the frustrated pyrochlore magnet Tb2Ti2O7. J. Phys. Conf. Ser. 683, 012022 (2016).

    Article  Google Scholar 

  47. 47.

    Jang, S. H.et al. Antiferromagnetic Kitaev interaction in f-electron based honeycomb magnets. Preprint at https://arxiv.org/abs/1807.01443 (2018).

  48. 48.

    Pistorius, C. W. F. T. & Kruger, G. J. Stability and structure of noncentrosymmetric hexagonal LnInO3 (Ln = Eu, Gd, Tb, Dy, Ho, Y). J. Inorg. Nucl. Chem. 38, 1471–1475 (1976).

    Article  Google Scholar 

  49. 49.

    Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 3, 26–37 (1992).

    Article  Google Scholar 

  50. 50.

    Larson, A. C. and Von Dreele, R. V. General Structure Analysis System, report no. LAUR 86-748 (Los Alamos National Laboratory, 1994).

  51. 51.

    Granroth, G. E. et al. SEQUOIA: a newly operating chopper spectrometer at the SNS. J. Phys. Conf. Ser. 251, 012058 (2010).

    Article  Google Scholar 

  52. 52.

    Ehlers, G., Podlesnyak, A. A. & Kolesnikov, A. I. The cold neutron chopper spectrometer at the Spallation Neutron Source—a review of the first 8 years of operation. Rev. Sci. Instrum. 87, 093902 (2016).

    ADS  Article  Google Scholar 

  53. 53.

    Azuah, R. T. et al. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low-energy neutron spectroscopic data. J. Res. Natl Inst. Stan. Technol. 114, 341–358 (2009).

    Article  Google Scholar 

  54. 54.

    Clark, L. et al. Low Temperature Structural Investigation of the Triangular Lattice Material TbInO 3 https://doi.org/10.5286/ISIS.E.58450984 (Science and Technology Facilities Council, 2015).

  55. 55.

    Clark, L. et al. A muSR Investigation of the Magnetic Ground State and Spin Dynamics in the Triangular Antiferromagnet TbInO 3 https://doi.org/10.5286/ISIS.E.79175145 (Science and Technology Facilities Council, 2016).

  56. 56.

    Sala, G. et al. TbInO 3 reduced neutron spectroscopy data from SNS on the CNCS and SEQUOIA instruments https://doi.org/10.13139/OLCF/1483946 (Oak Ridge National Laboratory, 2015).

Download references

Acknowledgements

Work at McMaster University was supported by NSERC of Canada. Research at Oak Ridge National Laboratory’s Spallation Neutron Source was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Work at ISIS was supported by the Science and Technology Facilities Council. Work at Rutgers University was supported by the DOE under grant no. DOE: DE-FG02–07ER46382. The authors thank A. Aczel, P. Baker, G. Chen and M. Gingras for helpful and insightful discussions during preparation of this manuscript.

Author information

Affiliations

Authors

Contributions

B.D.G. and S.-W.C. conceived and supervised the project. X.W., X.X. and Y.L. prepared samples and J.K. performed single-crystal magnetic susceptibility measurements. L.C. performed and analysed powder magnetic susceptibility measurements. L.C. and K.S.K. performed high-resolution powder neutron diffraction measurements and L.C. carried out Rietveld analysis of the data. L.C. and M.T.F.T. performed muon spectroscopy measurements and L.C. analysed the data. G.S., D.D.M. and M.B.S. performed the inelastic neutron scattering measurements and G.S. and L.C. analysed the data with guidance from B.D.G. G.S. performed the crystal field calculations and analysis with guidance from B.D.G. L.C. and B.D.G. prepared figures and wrote the paper.

Corresponding authors

Correspondence to Lucy Clark or Bruce D. Gaulin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Tables 1–2 and Supplementary Figures 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clark, L., Sala, G., Maharaj, D.D. et al. Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nat. Phys. 15, 262–268 (2019). https://doi.org/10.1038/s41567-018-0407-2

Download citation

Further reading