Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silver telluride colloidal quantum dot infrared photodetectors and image sensors

Abstract

Photodetectors that are sensitive in the shortwave-infrared (SWIR) range (1–2 µm) are of great interest for applications such as machine vision, autonomous driving and three-dimensional, night and adverse weather imaging, among others. Currently available technologies in the SWIR range rely on costly epitaxial semiconductors that are not monolithically integrated with complementary metal–oxide–semiconductor electronics. Solution-processed quantum dots can address this challenge by enabling low-cost manufacturing and simple monolithic integration on silicon in a back-end-of-line process. So far, colloidal quantum dot materials to access the SWIR regime are mostly based on lead sulfide and mercury telluride compounds, imposing major regulatory concerns for their deployment in consumer electronics due to the presence of toxic heavy metals. Here we report a new synthesis method for environmentally friendly silver telluride quantum dots and their application in high-performance SWIR photodetectors. The colloidal quantum dot photodetector stack employs materials compliant with the Restriction of Hazardous Substances directives and is sensitive in the spectral range from 350 nm to 1,600 nm. The room-temperature detectivity is of the order of 1012 Jones, the 3 dB bandwidth is in excess of 0.1 MHz and the linear dynamic range is over 118 dB. We also realize a monolithically integrated SWIR imager based on solution-processed, toxic-heavy-metal-free materials, thus paving the way for this technology to the consumer electronics market.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Size-tunable Ag2Te QDs.
Fig. 2: Ag2Te QD SWIR photodiode.
Fig. 3: Performance of Ag2Te QD photodiode.
Fig. 4: Top-illuminated Ag2Te QD photodetector and imager.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Guan, X. et al. Recent progress in short- to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 9, 2001708 (2021).

    CAS  Google Scholar 

  2. Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13, 277–282 (2019).

    ADS  CAS  Google Scholar 

  3. Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 10, 81–92 (2016).

    ADS  CAS  Google Scholar 

  4. Adomeit, U. & Krieg, J. Shortwave infrared for night vision applications: illumination levels and sensor performance. In Proc. SPIE 9641, Optics in Atmospheric Propagation and Adaptive Systems XVIII 964104 (SPIE, 2015).

  5. Wu, Z., Zhai, Y., Kim, H., Azoulay, J. D. & Ng, T. N. Emerging design and characterization guidelines for polymer-based infrared photodetectors. Acc. Chem. Res. 51, 3144–3153 (2018).

    CAS  PubMed  Google Scholar 

  6. Naczynski, D. J. et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 4, 2199 (2013).

    ADS  CAS  PubMed  Google Scholar 

  7. Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 12, 1123–1130 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

    ADS  CAS  PubMed  Google Scholar 

  10. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    ADS  Google Scholar 

  11. Goossens, S., Konstantatos, G. & Oikonomou, A. Colloidal quantum dot image sensors: technology and marketplace opportunities. Inf. Disp. 37, 18–23 (2021).

    Google Scholar 

  12. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    ADS  CAS  PubMed  Google Scholar 

  13. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005).

    ADS  CAS  PubMed  Google Scholar 

  14. Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photon. 5, 489–493 (2011).

    ADS  CAS  Google Scholar 

  15. Ackerman, M. M., Tang, X. & Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 12, 7264–7271 (2018).

    CAS  PubMed  Google Scholar 

  16. Zhang, H. et al. Material perspective on HgTe nanocrystal-based short-wave infrared focal plane arrays. Chem. Mater. https://doi.org/10.1021/acs.chemmater.2c02955 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, J. et al. A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat. Electron. 5, 443–451 (2022).

  18. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    ADS  CAS  Google Scholar 

  19. Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  20. Luo, Y. et al. Megapixel large-format colloidal quantum-dot infrared imagers with resonant-cavity enhanced photoresponse. APL Photonics 8, 056109 (2023).

    ADS  CAS  Google Scholar 

  21. Zhang, S. et al. Direct optical lithography enabled multispectral colloidal quantum-dot imagers from ultraviolet to short-wave infrared. ACS Nano 16, 18822–18829 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, S. et al. Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots. ACS Photonics 10, 673–682 (2023).

    CAS  Google Scholar 

  23. Yang, H. et al. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 33, 2103953 (2021).

  24. Zhang, Y. et al. Controlled synthesis of Ag2Te@Ag2S core–shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window. Small 16, 2001003 (2020).

    CAS  Google Scholar 

  25. Chen, C., He, X., Gao, L. & Ma, N. Cation exchange-based facile aqueous synthesis of small, stable, and nontoxic near-Infrared Ag2Te/ZnS core/shell quantum dots emitting in the second biological window. ACS Appl. Mater. Interfaces 5, 1149–1155 (2013).

    PubMed  Google Scholar 

  26. Liu, Z.-Y. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 143, 12867–12877 (2021).

  27. Hafiz, S. B. et al. Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection. ACS Appl. Nano Mater. 2, 1631–1636 (2019).

    CAS  Google Scholar 

  28. Hafiz, S. B., Al Mahfuz, M. M. & Ko, D.-K. Vertically stacked intraband quantum dot devices for mid-wavelength infrared photodetection. ACS Appl. Mater. Interfaces 13, 937–943 (2021).

    CAS  PubMed  Google Scholar 

  29. Liu, Y.-W. et al. Near-infrared absorption of monodisperse silver telluride (Ag2Te) nanocrystals and photoconductive response of their self-assembled superlattices. Chem. Mater. 23, 4657–4659 (2011).

    CAS  Google Scholar 

  30. Lee, W.-Y. et al. Room-temperature high-detectivity flexible near-infrared photodetectors with chalcogenide silver telluride nanoparticles. ACS Omega 7, 10262–10267 (2022).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sahu, A., Qi, L., Kang, M. S., Deng, D. & Norris, D. J. Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc. 133, 6509–6512 (2011).

    CAS  PubMed  Google Scholar 

  32. Scimeca, M. R. et al. Origin of intraband optical transitions in Ag2Se colloidal quantum dots. J. Phys. Chem. C 125, 17556–17564 (2021).

    CAS  Google Scholar 

  33. Ouyang, J. et al. Ag2Te colloidal quantum dots for near-infrared-II photodetectors. ACS Appl. Nano Mater. 4, 13587–13601 (2021).

    CAS  Google Scholar 

  34. Zhang, M.-Y. et al. Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7%. Chem. Mater. https://doi.org/10.1021/acs.chemmater.1c02610 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature https://doi.org/10.1038/s41586-022-05541-z (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shi, X.-H., Dai, Y.-Y., Wang, L., Wang, Z.-G. & Liu, S.-L. Water-soluble high-quality Ag2Te quantum dots prepared by mutual adaptation of synthesis and surface modification for in vivo imaging. ACS Appl. Bio Mater 4, 7692–7700 (2021).

    CAS  PubMed  Google Scholar 

  37. Yarema, M. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5, 3758–3765 (2011).

    CAS  PubMed  Google Scholar 

  38. Wu, W., Schulman, J. N., Hsu, T. Y. & Efron, U. Effect of size nonuniformity on the absorption spectrum of a semiconductor quantum dot system. Appl. Phys. Lett. 51, 710–712 (1987).

    ADS  Google Scholar 

  39. Liu, M. et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258–263 (2017).

    ADS  CAS  PubMed  Google Scholar 

  40. Gilmore, R. H., Lee, E. M. Y., Weidman, M. C., Willard, A. P. & Tisdale, W. A. Charge carrier hopping dynamics in homogeneously broadened PbS quantum dot solids. Nano Lett. 17, 893–901 (2017).

    ADS  CAS  PubMed  Google Scholar 

  41. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    ADS  CAS  PubMed  Google Scholar 

  42. Stürzenbaum, S. et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 8, 57–60 (2012).

  43. Aubert, T. et al. General expression for the size-dependent optical properties of quantum dots. Nano Lett. 22, 1778–1785 (2022).

    ADS  CAS  PubMed  Google Scholar 

  44. Rodenkirchen, C. et al. Employing interfaces with metavalently bonded materials for phonon scattering and control of the thermal conductivity in TAGS-x thermoelectric materials. Adv. Funct. Mater. 30, 1910039 (2020).

    CAS  Google Scholar 

  45. Lee, M., Rosenbaum, T. F., Saboungi, M.-L. & Schnyders, H. S. Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 88, 066602 (2002).

    ADS  CAS  PubMed  Google Scholar 

  46. Pei, Y., Heinz, N. A. & Snyder, G. J. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. J. Mater. Chem. 21, 18256 (2011).

    CAS  Google Scholar 

  47. Das, V. D. & Karunakaran, D. Semiconducting behavior of Ag2Te thin films and the dependence of band gap on thickness. J. Appl. Phys. 54, 5252–5255 (1983).

    ADS  CAS  Google Scholar 

  48. Yang, J. et al. Ligand-engineered HgTe colloidal quantum dot solids for infrared photodetectors. Nano Lett. https://doi.org/10.1021/acs.nanolett.2c00950 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen, D. et al. Passivating {100} facets of PbS colloidal quantum dots via perovskite bridges for sensitive and stable infrared photodiodes. Adv. Funct. Mater. 33, 2210158 (2022).

  50. Sun, B. et al. Fast near-infrared photodetection using III–V colloidal quantum dots. Adv. Mater. 34, 2203039 (2022).

    CAS  Google Scholar 

  51. Leemans, J. et al. Colloidal III–V quantum dot photodiodes for short-wave infrared photodetection. Adv. Sci. 9, 2200844 (2022).

    CAS  Google Scholar 

  52. Vafaie, M. et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm. Matter 4, 1042–1053 (2021).

    CAS  Google Scholar 

  53. Biondi, M. et al. Facet-oriented coupling enables fast and sensitive colloidal quantum dot photodetectors. Adv. Mater. 33, 2101056 (2021).

  54. Zhang, Y. et al. Electron transport layers employing strongly bound ligands enhance stability in colloidal quantum dot infrared photodetectors. Adv. Mater. 34, 2206884 (2022).

  55. Lu, S. et al. High-performance colloidal quantum dot photodiodes via suppressing interface defects. ACS Appl. Mater. Interfaces 15, 12061–12069 (2023).

    CAS  PubMed  Google Scholar 

  56. Wang, Y. et al. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photon. 16, 235–241 (2022).

    ADS  CAS  Google Scholar 

  57. Wang, Y., Peng, L., Wang, Z. & Konstantatos, G. Environmentally friendly AgBiS2 nanocrystal inks for efficient solar cells employing green solvent processing. Adv. Energy Mater. 12, 2200700 (2022).

    CAS  Google Scholar 

  58. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 4, 40–44 (2009).

    ADS  CAS  PubMed  Google Scholar 

  59. Bao, C. et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 29, 1703209 (2017).

    Google Scholar 

  60. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    ADS  CAS  PubMed  Google Scholar 

  61. García de Arquer, F. P. et al. Field-emission from quantum-dot-in-perovskite solids. Nat. Commun. 8, 14757 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  62. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012).

    ADS  CAS  PubMed  Google Scholar 

  63. Feng, J. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404–410 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

G.K. acknowledges financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101002306), the Fundació Joan Ribas Araquistain (FJRA), the Fundació Privada Cellex, the program CERCA and ‘Severo Ochoa’ Centre of Excellence CEX2019-000910-S funded by the Spanish State Research Agency. Y.W. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754558. L.P. acknowledges support from the Horizon Europe Framework Programme, the Marie Skłodowska-Curie Postdoctoral Fellowships (grant agreement no. 101052595). S.G. acknowledges support from the Horizon—EIC action under the grant agreement no. 101113088—QSTACK. We would like to thank Y. Ren and D. Mandal for their help during the metal electrodes deposition and T. Khodkov for supplying the diced chips for the imager.

Author information

Authors and Affiliations

Authors

Contributions

G.K. supervised and directed the study. Y.W. and G.K. conceived the idea, designed this study and co-wrote the manuscript, with feedback from the co-authors. Y.W. synthesized the materials, performed the material characterization, fabricated and characterized the devices and analysed the data. L.P. contributed to the development and synthesis of the material. Y.W. fabricated the image sensor with the help of A.B. and Y.B. Y.B. contributed to the design of the experiment for the integration of the QD film onto the ROIC. J.S. performed the characterization of the image sensor and took the images. Y.W. and J.S. conducted the performance analysis of the imagers. A.M. contributed to the device fabrication. S.G. contributed in the supervision and design of experiments for the image sensor demonstration.

Corresponding author

Correspondence to Gerasimos Konstantatos.

Ethics declarations

Competing interests

G.K. and Y.W. have filed European patent applications nos. 23382511 and 23382714. G.K. serves as a co-founder, shareholder and scientific advisor at Qurv. J.S. and A.B. are employees of Qurv. S.G. is a shareholder and employee of Qurv. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jiang Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–27 and references.

Source data

Source Data Fig. 1

Absorption spectra and size distribution data.

Source Data Fig. 2

JV curves, EQE and responsivity.

Source Data Fig. 3

LDR, frequency-dependent response, transient current curve and detectivity.

Source Data Fig. 4

Dark and light JV curves and EQE.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, L., Schreier, J. et al. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photon. 18, 236–242 (2024). https://doi.org/10.1038/s41566-023-01345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01345-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing