Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Colloidal quantum dot electronics

Abstract

The development of electronics is increasingly dependent on low-cost, flexible, solution-processed semiconductors. Colloidal quantum dots are solution-processed semiconducting nanocrystals that have a size-tunable bandgap and can be fabricated on a range of substrates. Here we review developments in colloidal quantum dot electronics, focusing on luminescent, optoelectronic, memory and thermoelectric devices. We examine the role of surface chemistry in the suppression of non-radiative processes, the control of light–matter interactions and the regulation of carrier transport properties. We also highlight the prospects of perovskite quantum dots as single-photon sources, the design of new classes of colloidal quantum dots and superlattices for emerging applications and the role of hybrid device architectures in compensating for the limited carrier mobility in colloidal quantum dot solids while maintaining their tunable spectral response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CQD-based electronics.
Fig. 2: Colloidal quantum dots.
Fig. 3: The design and engineering of luminescent devices.
Fig. 4: Broadly tunable absorption enables efficient optoelectronic devices.
Fig. 5: CQD-based memory devices.
Fig. 6: Design of CQD-based thermoelectric devices.

References

  1. Rossetti, R., Nakahara, S. & Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79, 1086–1088 (1983). The discovery of colloidal semiconducting nanocrystals.

    Article  Google Scholar 

  2. Ekimov, A. I., Efros, A. L. & Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921–924 (1985).

    Article  Google Scholar 

  3. Vandyshev, Y., Dneprovskii, V., Klimov, V. & Okorokov, D. Lasing on a transition between quantum-well levels in a quantum dot. JETP Lett. 54, 442–445 (1991). Demonstration of CQD lasing, performed using glass-embedded CdSe nanocrystals.

    Google Scholar 

  4. Coe, S., Woo, W.-K., Bawendi, M. & Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  Google Scholar 

  5. Bawendi, M. G., Caruge, J. M., Halpert, J. E., Wood, V. & Bulovic, V. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photon. 2, 247–250 (2008). An early demonstration of CQD LEDs.

    Article  Google Scholar 

  6. Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–120 (2002).

    Article  Google Scholar 

  7. Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).

    Article  Google Scholar 

  8. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006). An early demonstration of solution-processed photodetectors that utilize photoconductive CQD films for both light sensitization and charge transport.

    Article  Google Scholar 

  9. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  Google Scholar 

  10. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  Google Scholar 

  11. Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F. & Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8, 6363–6371 (2014).

    Article  Google Scholar 

  12. Xia, Y. et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30, 1907379 (2020).

    Article  Google Scholar 

  13. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141 (2016). A comprehensive review of the role of surface ligands in tuning and designing properties of functional nanocrystals.

    Article  Google Scholar 

  14. Yazdani, N. et al. Measuring the vibrational density of states of nanocrystal-based thin films with inelastic X‑ray scattering. J. Phys. Chem. Lett. 9, 1561–1567 (2018).

    Article  Google Scholar 

  15. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009). This work explores the utility of molecular metal chalcogenide complexes as surface capping ligands for colloidal nanocrystals and nanowires.

    Article  Google Scholar 

  16. Brown, P. R. et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863–5872 (2014).

    Article  Google Scholar 

  17. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).

    Article  Google Scholar 

  18. Kim, B. H. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015).

    Article  Google Scholar 

  19. Grotevent, M. J. et al. Nanoprinted quantum dot–graphene photodetectors. Adv. Opt. Mater. 7, 1900019 (2019).

    Article  Google Scholar 

  20. Kim, T. H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  Google Scholar 

  21. Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  Google Scholar 

  22. Nam, T. W. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 11, 3040 (2020).

    Article  Google Scholar 

  23. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  Google Scholar 

  24. Coropceanu, I., Boles, M. A. & Talapin, D. V. Systematic mapping of binary nanocrystal superlattices: the role of topology in phase selection. J. Am. Chem. Soc. 141, 5728–5740 (2019).

    Article  Google Scholar 

  25. Weidman, M. C., Nguyen, Q., Smilgies, D.-M. & Tisdale, W. A. Impact of size dispersity, ligand coverage, and ligand length on the structure of PbS nanocrystal superlattices. Chem. Mater. 30, 807–816 (2018).

    Article  Google Scholar 

  26. Nagaoka, Y., Zhu, H., Eggert, D. & Chen, O. Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. Science 362, 1396–1400 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  27. Pourret, B. A., Guyot-Sionnest, P. & Elam, J. W. Atomic layer deposition of ZnO in quantum dot thin films. Adv. Mater. 21, 232–235 (2009).

    Article  Google Scholar 

  28. Liu, Y. et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V−1 s−1. Nano Lett. 13, 1578–1587 (2013).

    Article  Google Scholar 

  29. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138 (2005).

    Article  Google Scholar 

  30. Liu, M. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96–101 (2019).

    Article  Google Scholar 

  31. Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015).

    Article  Google Scholar 

  32. Yang, Z. et al. Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 15, 7539–7543 (2015).

    Article  Google Scholar 

  33. Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photon. 10, 253–257 (2016).

    Article  Google Scholar 

  34. García De Arquer, F. P. et al. Field-emission from quantum-dot-in-perovskite solids. Nat. Commun. 8, 14757 (2017).

    Article  Google Scholar 

  35. Barnham, K., Marques, J. L., Hassard, J. & O’Brien, P. Quantum-dot concentrator and thermodynamic model for the global redshift. Appl. Phys. Lett. 76, 1197–1199 (2000).

    Article  Google Scholar 

  36. Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 10, 878–885 (2015).

    Article  Google Scholar 

  37. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  Google Scholar 

  38. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article  Google Scholar 

  39. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    Article  Google Scholar 

  40. Jain, A. et al. Atomistic design of CdSe/CdS core–shell quantum dots with suppressed Auger recombination. Nano Lett. 16, 6491–6496 (2016).

    Article  Google Scholar 

  41. Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2010).

    Article  Google Scholar 

  42. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    Article  Google Scholar 

  43. Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Article  Google Scholar 

  44. Lim, J., Park, Y. S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–48 (2018).

    Article  Google Scholar 

  45. Hou, X. et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat. Commun. 10, 1750 (2019).

    Article  Google Scholar 

  46. Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    Article  Google Scholar 

  47. Park, Y., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–256 (2019).

    Article  Google Scholar 

  48. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  Google Scholar 

  49. Wu, K., Park, Y. S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    Article  Google Scholar 

  50. Sandanayaka, A. S. D. et al. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12, 061010 (2019).

    Article  Google Scholar 

  51. Geiregat, P. et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–41 (2018).

    Article  Google Scholar 

  52. Song, J. et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29, 1808377 (2019).

    Article  Google Scholar 

  53. Wang, L. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interfaces 9, 38755–38760 (2017).

    Article  Google Scholar 

  54. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  Google Scholar 

  55. Chen, S. et al. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 10, 765 (2019).

    Article  Google Scholar 

  56. Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–265 (2015).

    Article  Google Scholar 

  57. Cao, W., Xiang, C., Yang, Y., Chen, Q. & Chen, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608–2613 (2018).

    Article  Google Scholar 

  58. Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article  Google Scholar 

  59. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96 (2014).

    Article  Google Scholar 

  60. Won, Y. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  Google Scholar 

  61. Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    Article  Google Scholar 

  62. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  Google Scholar 

  63. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). Demonstration of highly luminescent perovskite-based CQDs that later opened up new avenues for solution-processed lighting and optical sources.

    Article  Google Scholar 

  64. Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article  Google Scholar 

  65. Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    Article  Google Scholar 

  66. Swarnkar, A. et al. Quantum dot-induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  Google Scholar 

  67. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–688 (2018).

    Article  Google Scholar 

  68. Fang, T. et al. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Sci. Bull. 66, 36–43 (2021).

    Article  Google Scholar 

  69. Gangishetty, M. K., Hou, S., Quan, Q. & Congreve, D. N. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv. Mater. 30, 1706226 (2018).

    Article  Google Scholar 

  70. Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006).

    Article  Google Scholar 

  71. Solomon, G. S., Santori, C., Fattal, D., Vuc, J. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  Google Scholar 

  72. Kamisaka, H., Kilina, S. V. & Yamashita, K. Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dots. Nano Lett. 6, 2295–2300 (2006).

    Article  Google Scholar 

  73. Schaller, R. D. et al. Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. Phys. Rev. Lett. 95, 196401 (2005).

    Article  Google Scholar 

  74. Accanto, N. et al. Engineering the spin–flip limited exciton dephasing in colloidal CdSe/CdS quantum dots. ACS Nano 6, 5227–5233 (2012).

    Article  Google Scholar 

  75. Bozyigit, D. et al. Soft surfaces of nanomaterials enable strong phonon interactions. Nature 531, 618–622 (2016).

    Article  Google Scholar 

  76. Rosen, M., Kuno, M., Nirmal, M., Norris, D. J. & Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  Google Scholar 

  77. Empedocles, S. A. & Bawendi, M. G. Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).

    Article  Google Scholar 

  78. Gao, Y. et al. Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids. Nano Lett. 11, 5471–5476 (2011).

    Article  Google Scholar 

  79. Ye, M. & Searson, P. C. Blinking in quantum dots: the origin of the grey state and power law statistics. Phys. Rev. B 84, 125317 (2011).

    Article  Google Scholar 

  80. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  Google Scholar 

  81. Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).

    Article  Google Scholar 

  82. Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    Article  Google Scholar 

  83. Tang, X. et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties. Adv. Sci. 6, 1900412 (2019).

    Article  Google Scholar 

  84. Hu, F. et al. Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett. 16, 6425–6430 (2016).

    Article  Google Scholar 

  85. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  Google Scholar 

  86. Yazdani, N. et al. Tuning electron–phonon interactions in nanocrystals through surface termination. Nano Lett. 18, 2233–2242 (2018).

    Article  Google Scholar 

  87. Raino, G., Landuyt, A., Krieg, F., Bernasconi, C. & Kovalenko, M. V. Underestimated effect of a polymer matrix on the light emission of single CsPbBr3 nanocrystals. Nano Lett. 19, 3648–3653 (2019).

    Article  Google Scholar 

  88. Lin, X. et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132–1138 (2017).

    Article  Google Scholar 

  89. Hou, B. et al. Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance. Adv. Funct. Mater. 30, 2004563 (2020).

    Article  Google Scholar 

  90. Zheng, S., Chen, J., Johansson, E. M. J. & Zhang, X. PbS colloidal quantum dot inks for infrared solar cells. iScience 23, 101753 (2020).

    Article  Google Scholar 

  91. Yuan, M., Liu, M. & Sargent, E. H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1, 16016 (2016).

    Article  Google Scholar 

  92. Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008).

    Article  Google Scholar 

  93. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    Article  Google Scholar 

  94. Yakunin, S. et al. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals. ACS Nano 8, 12883–12894 (2014).

    Article  Google Scholar 

  95. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348 (2011).

    Article  Google Scholar 

  96. Huo, N., Gupta, S. & Konstantatos, G. MoS2–HgTe quantum dot hybrid photodetectors beyond 2 µm. Adv. Mater. 29, 1606576 (2017).

    Article  Google Scholar 

  97. Shin, S. W., Lee, K., Park, J. & Kang, S. J. Highly transparent, visible-light photodetector based on oxide semiconductors and quantum dots. ACS Appl. Mater. Interfaces 7, 19666–19671 (2015).

    Article  Google Scholar 

  98. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    Article  Google Scholar 

  99. Cho, K. et al. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors. Nat. Commun. 8, 840 (2017).

    Article  Google Scholar 

  100. Ning, Z., Dong, H., Zhang, Q., Voznyy, O. & Sargent, E. H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 8, 10321–10327 (2014).

    Article  Google Scholar 

  101. Liu, M. et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258–263 (2017).

    Article  Google Scholar 

  102. Yang, Z. et al. Mixed-quantum-dot solar cells. Nat. Commun. 8, 1325 (2017).

    Article  Google Scholar 

  103. Nikitskiy, I. et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 7, 11954 (2016).

    Article  Google Scholar 

  104. Adinolfi, V. & Sargent, E. H. Photovoltage field-effect transistors. Nature 542, 324–327 (2017).

    Article  Google Scholar 

  105. Kovalenko, M. V. et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. J. Am. Chem. Soc. 128, 3516–3517 (2006).

    Article  Google Scholar 

  106. Keuleyan, S. E., Guyot-Sionnest, P., Delerue, C. & Allan, G. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 8, 8676–8682 (2014).

    Article  Google Scholar 

  107. Tang, X., Ackerman, M. M. & Guyot-Sionnest, P. Thermal imaging with plasmon resonance. ACS Nano 12, 7362–7370 (2018).

    Article  Google Scholar 

  108. Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13, 277–282 (2019).

    Article  Google Scholar 

  109. Lhuillier, E. et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett. 16, 1282–1286 (2016).

    Article  Google Scholar 

  110. Deng, Z., Jeong, K. S. & Guyot-Sionnest, P. Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014).

    Article  Google Scholar 

  111. Park, M., Choi, D., Choi, Y., Shin, H. & Jeong, K. S. Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals. ACS Photon. 5, 1907–1911 (2018).

    Article  Google Scholar 

  112. Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011).

    Article  Google Scholar 

  113. Askari, S., Mariotti, D., Stehr, J. E., Benedikt, J. & Keraudy, J. Low-loss and tunable localized mid-infrared plasmons in nanocrystals of highly degenerate InN. Nano Lett. 18, 5681–5687 (2018).

    Article  Google Scholar 

  114. Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019).

    Article  Google Scholar 

  115. Liu, J. et al. MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 12, 59 (2020).

    Article  Google Scholar 

  116. Liu, H. et al. Chemiresistive gas sensors employing solution-processed metal oxide quantum dot films. Appl. Phys. Lett. 105, 163104 (2014).

    Article  Google Scholar 

  117. Li, M. et al. PbSe quantum dots-based chemiresistors for room-temperature NO2 detection. Sens. Actuators B 256, 1045–1056 (2018).

    Article  Google Scholar 

  118. Kang, Z. et al. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy. J. Appl. Phys. 120, 043107 (2016).

    Article  Google Scholar 

  119. Larrió.n, B. et al. Photonic crystal fiber temperature sensor based on quantum dot nanocoatings. J. Sens. 2009, 932471 (2009).

    Google Scholar 

  120. Yan, C., Wen, J., Lin, P. & Sun, Z. A tunneling dielectric layer free floating gate nonvolatile memory employing type I core–shell quantum dots as discrete charge-trapping/tunneling centers. Small 15, 1804156 (2019).

    Article  Google Scholar 

  121. Han, S. et al. CdSe/ZnS core–shell quantum dots charge trapping layer for flexible photonic memory. J. Mater. Chem. C 3, 3173–3180 (2015).

    Article  Google Scholar 

  122. Li, W. et al. A tricolor photodetecting memory device based on lead sulfide colloidal quantum dots floating gate. Org. Electron. 75, 105111 (2019).

    Article  Google Scholar 

  123. Jeong, Y. J., Yun, D., Noh, S. H., Park, C. E. & Jang, J. Surface modification of CdSe quantum-dot floating gates for advancing light-erasable organic field-effect transistor memories. ACS Nano 12, 7701–7709 (2018).

    Article  Google Scholar 

  124. Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    Article  Google Scholar 

  125. Fong, S. W., Neumann, C. M. & Wong, H.-S. P. Phase-change memory—towards a storage-class memory. IEEE Trans. Electron Devices 64, 4374–4385 (2017).

    Article  Google Scholar 

  126. Caldwell, M. A., Raoux, S., Wang, R. Y., Philip, H. & Milliron, D. J. Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J. Mater. Chem. 20, 1285–1291 (2010).

    Article  Google Scholar 

  127. Arachchige, I. U., Soriano, R., Malliakas, C. D., Ivanov, S. A. & Kanatzidis, M. G. Amorphous and crystalline GeTe nanocrystals. Adv. Funct. Mater. 21, 2737–2743 (2011).

    Article  Google Scholar 

  128. Yarema, O. et al. Colloidal phase-change materials: synthesis of monodisperse GeTe nanoparticles and quantification of their size-dependent crystallization. Chem. Mater. 30, 6134–6143 (2018).

    Article  Google Scholar 

  129. Polking, M. J. et al. Size-dependent polar ordering in colloidal GeTe nanocrystals. Nano Lett. 11, 1147–1152 (2011).

    Article  Google Scholar 

  130. Chen, B. et al. Resolving crystallization kinetics of GeTe phase-change nanoparticles by ultrafast calorimetry. Cryst. Growth Des. 18, 1041–1046 (2018).

    Article  Google Scholar 

  131. Jeyasingh, R. G. D., Caldwell, M. A., Milliron, D. J. & Wong, H. P. First demonstration of phase change memory device using solution processed GeTe nanoparticles. In 2011 Proc. European Solid-State Device Research Conference 99–102 (IEEE, 2011).

  132. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  Google Scholar 

  133. Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M. & Chen, G. Enhancing the thermoelectric power factor by using invisible dopants. Adv. Mater. 25, 1577–1582 (2013).

    Article  Google Scholar 

  134. He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).

    Article  Google Scholar 

  135. Urban, J. J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol. 10, 997–1001 (2015).

    Article  Google Scholar 

  136. Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014).

    Article  Google Scholar 

  137. Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).

    Article  Google Scholar 

  138. Diroll, B. T., Guo, P. & Schaller, R. D. Heat transfer at hybrid interfaces: interfacial ligand-to-nanocrystal heating monitored with infrared pump, electronic probe spectroscopy. Nano Lett. 18, 7863–7869 (2018).

    Article  Google Scholar 

  139. Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).

    Article  Google Scholar 

  140. Yazdani, N. et al. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 10, 4236 (2019).

    Article  Google Scholar 

  141. Feser, J. P., Chan, E. M., Majumdar, A., Segalman, R. A. & Urban, J. J. Ultralow thermal conductivity in polycrystalline CdSe thin films with controlled grain size. Nano Lett. 13, 2122–2127 (2013).

    Article  Google Scholar 

  142. Liu, M., Ma, Y. & Wang, R. Y. Modifying thermal transport in colloidal nanocrystal solids with surface chemistry. ACS Nano 9, 12079–12087 (2015).

    Article  Google Scholar 

  143. Jansen, M., Yazdani, N. & Wood, V. Phonon-engineered solids constructed from nanocrystals. APL Mater. 7, 081124 (2019).

    Article  Google Scholar 

  144. Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015). This work extends the concept of substitutional atomic doping to nanometre-scale doping, in which one nanocrystal is used to replace another to form doped self-assembled superlattices, thus achieving highly tunable electronic properties.

    Article  Google Scholar 

  145. Wang, R. Y. et al. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 8, 2283–2288 (2008).

    Article  Google Scholar 

  146. Jin, H. et al. Hybrid organic–inorganic thermoelectric materials and devices. Angew. Chem. 58, 15206–15226 (2019).

    Article  Google Scholar 

  147. Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Article  Google Scholar 

  148. Medlin, D. L. & Snyder, G. J. Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226–235 (2009).

    Article  Google Scholar 

  149. Cadavid, D. et al. Organic ligand displacement by metal salts to enhance nanoparticle functionality: thermoelectric properties of Ag2Te. J. Mater. Chem. A 1, 4864 (2013).

    Article  Google Scholar 

  150. Ibáñez, M. et al. High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat. Commun. 7, 10766 (2016).

    Article  Google Scholar 

  151. Xu, B., Feng, T., Li, Z., Pantelides, S. T. & Wu, Y. Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 18, 4034–4039 (2018).

    Article  Google Scholar 

  152. Ibáñez, M. et al. Tuning p-type transport in bottom-up-engineered nanocrystalline Pb chalcogenides using alkali metal chalcogenides as capping ligands. Chem. Mater. 29, 7093–7097 (2017).

    Article  Google Scholar 

  153. Ibáñez, M. et al. Electron doping in bottom-up engineered thermoelectric nanomaterials through HCl-mediated ligand displacement. J. Am. Chem. Soc. 137, 4046–4049 (2015).

    Article  Google Scholar 

  154. Sitt, A., Salant, A., Menagen, G. & Banin, U. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 11, 2054–2060 (2011).

    Article  Google Scholar 

  155. Cui, J. et al. Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun. 10, 5401 (2019).

    Article  Google Scholar 

  156. Weidman, M. C. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–782 (2016).

    Article  Google Scholar 

  157. Zhang, H. et al. Stable colloids in molten inorganic salts. Nature 542, 328–331 (2017).

    Article  Google Scholar 

  158. Gilmore, R. H., Lee, E. M. Y., Weidman, M. C., Willard, A. P. & Tisdale, W. A. Charge carrier hopping dynamics in homogeneously broadened PbS quantum dot solids. Nano Lett. 17, 893–901 (2017).

    Article  Google Scholar 

  159. Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–933 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This publication is based in part on support by the Ontario Research Fund Research Excellence Program, by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the Swiss National Science foundation via an Ambizione Fellowship (no. 161249). M.Y. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 852751).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the preparation of the manuscript.

Corresponding authors

Correspondence to Vanessa Wood or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Bo Hou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yazdani, N., Yarema, M. et al. Colloidal quantum dot electronics. Nat Electron 4, 548–558 (2021). https://doi.org/10.1038/s41928-021-00632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00632-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing