Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum

Abstract

Non-reciprocal devices—in which light is transmitted with different efficiencies along opposite directions—are key technologies for modern photonic applications, yet their compact and miniaturized implementation remains an open challenge. Among different avenues, nonlinearity-induced non-reciprocity has attracted significant attention due to the absence of external bias and the ease of integrability within conventional material platforms. So far, nonlinearity-induced non-reciprocity has been demonstrated only in guided platforms using high-quality-factor resonators. Here we demonstrate ultrathin optical metasurfaces with a large non-reciprocal response for free-space radiation based on silicon thermo-optic nonlinearities. Our metasurfaces combine an out-of-plane asymmetry—necessary to obtain non-reciprocity—with in-plane broken symmetry, which finely tunes the radiative linewidth of quasi-bound states in the continuum. Third-order thermo-optic nonlinearities, engaged by the quasi-bound state in the continuum, are shown to enable over 10 dB of non-reciprocal transmission and less than 3 dB of insertion loss, for impinging average intensities smaller than 3 kW cm–2. Numerical calculations suggest that the build-up and relaxation times of the non-reciprocal response can approach sub-microsecond scales, only limited by thermal dissipation. The demonstrated devices merge the field of non-reciprocity with ultrathin metasurface technologies, offering an exciting functionality for signal processing and routing, communications and protection of high-power laser cavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Passive free-space non-reciprocity using nonlinear metasurfaces with tailored asymmetries.
Fig. 2: Fabrication and linear characterizations of metasurfaces.
Fig. 3: Experimental demonstration of nonlinearity-induced non-reciprocity.
Fig. 4: Non-reciprocal response of the same device for different excitation wavelengths.
Fig. 5: Bistability and impact of thermo-optic effects.

Similar content being viewed by others

Data availability

All data that support the findings of this work are available in this Article and its Supplementary Information. The raw data for all the experimental plots are available via Zenodo at https://doi.org/10.5281/zenodo.8408935.

Code availability

All numerical simulations were performed using a commercially available electromagnetic solver (COMSOL v. 6.0). All numerical results can be reproduced by following the descriptions provided in the Article and its Supplementary Information.

References

  1. Collin, R. E. Antennas and Radiowave Propagation (McGraw-Hill, 1985).

  2. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    ADS  Google Scholar 

  3. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    ADS  Google Scholar 

  4. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    ADS  Google Scholar 

  5. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    ADS  Google Scholar 

  6. Sounas, D. L., Caloz, C. & Alu, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013).

    ADS  Google Scholar 

  7. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    ADS  Google Scholar 

  8. Estep, N. A., Sounas, D. L., Soric, J. & Alu, A. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014).

    Google Scholar 

  9. Ruesink, F., Miri, M.-A., Alu, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    ADS  Google Scholar 

  10. Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

    ADS  Google Scholar 

  11. Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    ADS  Google Scholar 

  12. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2011).

    ADS  Google Scholar 

  13. Bender, N. et al. Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett. 110, 234101 (2013).

    ADS  Google Scholar 

  14. Nazari, F. et al. Optical isolation via \({\mathscr{P}}{\mathscr{T}}\)-symmetric nonlinear Fano resonances. Opt. Express 22, 9574–9584 (2014).

    ADS  Google Scholar 

  15. Mahmoud, A. M., Davoyan, A. R. & Engheta, N. All-passive nonreciprocal metastructure. Nat. Commun. 6, 8359 (2015).

    ADS  Google Scholar 

  16. Yu, Y. et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photonics Rev. 9, 241–247 (2015).

    ADS  Google Scholar 

  17. Lawrence, M., Barton, D. R. & Dionne, J. A. Nonreciprocal flat optics with silicon metasurfaces. Nano Lett. 18, 1104–1109 (2018).

    ADS  Google Scholar 

  18. Sounas, D. L. & Alù, A. Fundamental bounds on the operation of Fano nonlinear isolators. Phys. Rev. B 97, 115431 (2018).

    ADS  Google Scholar 

  19. Sounas, D. L., Soric, J. & Alù, A. Broadband passive isolators based on coupled nonlinear resonances. Nat. Electron. 1, 113–119 (2018).

    Google Scholar 

  20. Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    ADS  Google Scholar 

  21. Cotrufo, M., Mann, S. A., Moussa, H. & Alu, A. Nonlinearity-induced nonreciprocity—Part I. IEEE Trans. Microw. Theory Tech. 69, 3569–3583 (2021).

  22. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    ADS  Google Scholar 

  23. Müller, C., Combes, J., Hamann, A. R., Fedorov, A. & Stace, T. M. Nonreciprocal atomic scattering: a saturable, quantum Yagi-Uda antenna. Phys. Rev. A 96, 053817 (2017).

  24. Rosario Hamann, A. et al. Nonreciprocity realized with quantum nonlinearity. Phys. Rev. Lett. 121, 123601 (2018).

    ADS  Google Scholar 

  25. Nefedkin, N., Cotrufo, M. & Alù, A. Nonreciprocal total cross section of quantum metasurfaces. Nanophotonics 12, 589–606 (2023).

  26. Jin, B. & Argyropoulos, C. Self-induced passive nonreciprocal transmission by nonlinear bifacial dielectric metasurfaces. Phys. Rev. Appl. 13, 054056 (2020).

    ADS  Google Scholar 

  27. Mekawy, A., Sounas, D. L. & Alù, A. Free-space nonreciprocal transmission based on nonlinear coupled Fano metasurfaces. Photonics 8, 139 (2021).

    Google Scholar 

  28. Solís, D. M. & Engheta, N. Nonreciprocal epsilon-near-zero-dielectric bilayers: enhancement of nonreciprocity from a nonlinear transparent conducting oxide thin film at epsilon-near-zero frequency. Phys. Rev. Appl. 17, 034053 (2022).

    ADS  Google Scholar 

  29. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    ADS  Google Scholar 

  30. Vega-Flick, A. et al. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings. AIP Adv. 6, 121903 (2016).

    ADS  Google Scholar 

  31. Schmotz, M., Bookjans, P., Scheer, E. & Leiderer, P. Optical temperature measurements on thin freestanding silicon membranes. Rev. Sci. Instrum. 81, 114903 (2010).

    ADS  Google Scholar 

  32. Ravichandran, N. K., Zhang, H. & Minnich, A. J. Spectrally resolved specular reflections of thermal phonons from atomically rough surfaces. Phys. Rev. X 8, 041004 (2018).

    Google Scholar 

  33. Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

    ADS  Google Scholar 

  34. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    ADS  Google Scholar 

  35. Koshelev, K. et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019).

    Google Scholar 

  36. Liu, Z. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).

    ADS  Google Scholar 

  37. Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

    ADS  Google Scholar 

  38. Hwang, M.-S. et al. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun. 12, 4135 (2021).

    ADS  Google Scholar 

  39. Sounas, D. L. & Alu, A. Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures. Phys. Rev. Lett. 118, 154302 (2017).

    ADS  Google Scholar 

  40. Wang, K. X., Yu, Z., Sandhu, S. & Fan, S. Fundamental bounds on decay rates in asymmetric single-mode optical resonators. Opt. Lett. 38, 100–102 (2013).

    ADS  Google Scholar 

  41. Boyd, R. W. Nonlinear Optics (Academic Press, 2020).

  42. Hofstrand, A., Cotrufo, M. & Alù, A. Nonreciprocal pulse shaping and chaotic modulation with asymmetric noninstantaneous nonlinear resonators. Phys. Rev. A 104, 053529 (2021).

    ADS  Google Scholar 

  43. Geng, Z. et al. Universal scaling in the dynamic hysteresis, and non-Markovian dynamics, of a tunable optical cavity. Phys. Rev. Lett. 124, 153603 (2020).

    ADS  Google Scholar 

  44. Della Corte, F. G., Montefusco, M. E., Moretti, L., Rendina, I. & Rubino, A. Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 μm. Appl. Phys. Lett. 79, 168–170 (2001).

    ADS  Google Scholar 

  45. Khurgin, J. B., Sun, G., Chen, W. T., Tsai, W.-Y. & Tsai, D. P. Ultrafast thermal nonlinearity. Sci. Rep. 5, 17899 (2015).

    ADS  Google Scholar 

  46. White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023).

    ADS  Google Scholar 

  47. Abdollahramezani, S. et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 13, 1696 (2022).

    ADS  Google Scholar 

  48. Matres, J. et al. High nonlinear figure-of-merit amorphous silicon waveguides. Opt. Express 21, 3932–3940 (2013).

    ADS  Google Scholar 

  49. Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604–16644 (2007).

    ADS  Google Scholar 

  50. White, J., Cuzeau, S., Hulin, D. & Vanderhaghen, R. Subpicosecond hot carrier cooling in amorphous silicon. J. Appl. Phys. 84, 4984–4991 (1998).

    ADS  Google Scholar 

  51. Haché, A. & Bourgeois, M. Ultrafast all-optical switching in a silicon-based photonic crystal. Appl. Phys. Lett. 77, 4089–4091 (2000).

    ADS  Google Scholar 

  52. D’Aguanno, G., Sounas, D. L., Saied, H. M. & Alù, A. Nonlinearity-based circulator. Appl. Phys. Lett. 114, 181102 (2019).

    ADS  Google Scholar 

  53. Peters, K. & Rodriguez, S. Limit cycles and chaos induced by a nonlinearity with memory. Eur. Phys. J. Spec. Top. 231, 247–254 (2022).

    Google Scholar 

  54. Almeida, J., Barbano, E., Arnold, C. B., Misoguti, L. & Mendonça, C. R. Nonlinear optical waveguides in As2S3-Ag2S chalcogenide glass thin films. Opt. Mater. Express 7, 93–99 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Korobkin for experimental assistance in the earlier stages of this project. M.C. and A.A. acknowledge support from the Air Force Office of Scientific Research and the Simons Foundation. A.C. and A.P. acknowledge support from the research program of The Netherlands Organization for Scientific Research (NWO). Device fabrication was performed at the Nanofabrication Facility at the Advanced Science Research Center at The Graduate Center of the City University of New York.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the idea and the corresponding experiment. M.C., A.C. and D.L.S. designed the device and performed the numerical analysis. M.C. fabricated the devices and performed the experimental measurements with assistance from A.C. All authors analysed the data and contributed to writing the manuscript. A.A. and A.P. supervised the project.

Corresponding author

Correspondence to Andrea Alù.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Lin Chang, Zongfu Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8, Figs. 1–8, Table 1 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotrufo, M., Cordaro, A., Sounas, D.L. et al. Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum. Nat. Photon. 18, 81–90 (2024). https://doi.org/10.1038/s41566-023-01333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01333-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing