Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlinear optical effects in epsilon-near-zero media

Abstract

Efficient nonlinear optical interactions are essential for many applications in modern photonics. However, they typically require intense laser sources and long interaction lengths, requirements that often render nonlinear optics incompatible with new nanophotonic architectures in integrated optics and metasurface devices. Obtaining materials with stronger nonlinear properties is a crucial step towards applications that require lower powers and smaller footprints. Recently, a new class of materials with a vanishing permittivity, known as epsilon-near-zero (ENZ) materials, has been reported to exhibit unprecedented ultrafast nonlinear efficiencies within sub-wavelength propagation lengths. In this Review, we survey the work that has been performed on ENZ materials and the related near-zero-index materials, focusing on the observation of various nonlinear phenomena (such as intensity-dependent refraction, four-wave mixing and harmonic generation), the identification of unique field-enhancement mechanisms and the study of non-equilibrium dynamics. Degenerately doped semiconductors (such as tin-doped indium oxide and aluminium-doped zinc oxide) are particularly promising candidates for ENZ-enhanced nonlinear optical applications. We conclude by pointing towards possible future research directions, such as the search for ENZ materials with low optical losses and the elucidation of the mechanisms underlying nonlinear enhancements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maximum changes in refractive index.
Fig. 2: Mechanisms underlying nonlinearity and enhancement.
Fig. 3: Field enhancement in the epsilon-near-zero mode.
Fig. 4: Epsilon-near-zero and near-zero-index materials.
Fig. 5: Intensity-dependent refraction in indium tin oxide.
Fig. 6: Non-degenerate nonlinearities in aluminium-doped zinc oxide.
Fig. 7: Harmonic generation in epsilon-near-zero materials.
Fig. 8: Voltage-controlled permittivity.
Fig. 9: Other nonlinear phenomena in epsilon-near-zero and near-zero-index materials.

Similar content being viewed by others

References

  1. Garmire, E. Nonlinear optics in daily life. Opt. Express 21, 30532–30544 (2013).

    Google Scholar 

  2. Cotter, D. et al. Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999).

    CAS  Google Scholar 

  3. Glezer, E. N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).

    CAS  Google Scholar 

  4. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1999).

  5. Leach, J. et al. Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662–665 (2010).

    CAS  Google Scholar 

  6. Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein–Podolsky–Rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

    Google Scholar 

  7. Boyd, R. W. Nonlinear Optics. 3rd edn (Academic, 2008).

  8. Miller, D. A. B. Are optical transistors the logical next step? Nat. Photonics 4, 3–5 (2010).

    CAS  Google Scholar 

  9. Kinsey, N. et al. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2, 616–622 (2015).

    CAS  Google Scholar 

  10. Luk, T. S. et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett. 106, 151103 (2015).

    Google Scholar 

  11. Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett. 40, 1500–1503 (2015).

    CAS  Google Scholar 

  12. Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    CAS  Google Scholar 

  13. Caspani, L. et al. Enhanced nonlinear refractive index in ϵ-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

    CAS  Google Scholar 

  14. Yang, Y. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 11, 390–395 (2017).

    CAS  Google Scholar 

  15. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Google Scholar 

  16. Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Google Scholar 

  17. Edwards, B., Alù, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    Google Scholar 

  18. Molesky, S., Dewalt, C. J. & Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 21, A96–A110 (2013).

    Google Scholar 

  19. Engheta, N. Pursuing near-zero response. Science 340, 286–287 (2013).

    CAS  Google Scholar 

  20. Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater. 6, 1701292 (2018).

    Google Scholar 

  21. Liberal, I. & Engheta, N. The rise of near-zero-index technologies. Science 358, 1540–1541 (2017).

    CAS  Google Scholar 

  22. Liberal, I. & Engheta, N. Zero-index platforms: where light defies geometry. Opt. Photon. News 27, 26–33 (2016).

    Google Scholar 

  23. Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017).

    CAS  Google Scholar 

  24. Vulis, D. I., Reshef, O., Camayd-Muñoz, P. & Mazur, E. Manipulating the flow of light using Dirac-cone zero-index metamaterials. Rep. Prog. Phys. 82, 012001 (2019).

    Google Scholar 

  25. Ciattoni, A., Rizza, C. & Palange, E. Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity. Phys. Rev. A 81, 043839 (2010).

    Google Scholar 

  26. Ciattoni, A., Rizza, C. & Palange, E. Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity. Opt. Lett. 35, 2130–2132 (2010).

    CAS  Google Scholar 

  27. Vincenti, M. A., de Ceglia, D., Ciattoni, A. & Scalora, M. Singularity-driven second-and third-harmonic generation at ϵ-near-zero crossing points. Phys. Rev. A 84, 63826 (2011).

    Google Scholar 

  28. Ciattoni, A. & Spinozzi, E. Efficient second-harmonic generation in micrometer-thick slabs with indefinite permittivity. Phys. Rev. A 85, 043806 (2012).

    Google Scholar 

  29. Argyropoulos, C., Chen, P.-Y., D’Aguanno, G., Engheta, N. & Alù, A. Boosting optical nonlinearities in ϵ-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012).

    Google Scholar 

  30. Argyropoulos, C., D’Aguanno, G. & Alù, A. Giant second-harmonic generation efficiency and ideal phase matching with a double ϵ-near-zero cross-slit metamaterial. Phys. Rev. B 89, 235401 (2014).

    Google Scholar 

  31. Harbold, J. M. et al. Highly nonlinear As–S–Se glasses for all-optical switching. Opt. Lett. 27, 119–121 (2002).

    CAS  Google Scholar 

  32. Slusher, R. E. et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B 21, 1146–1155 (2004).

    CAS  Google Scholar 

  33. Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011).

    CAS  Google Scholar 

  34. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    CAS  Google Scholar 

  35. Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics 2, 1584–1591 (2015).

    CAS  Google Scholar 

  36. Clerici, M. et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat. Commun. 8, 15829 (2017).

    CAS  Google Scholar 

  37. Carnemolla, E. G. et al. Giant nonlinear frequency shift in epsilon-near-zero aluminum zinc oxide thin films. Conference on Lasers and Electro-Optics, SM4D.7. (OSA, 2018).

  38. Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

    CAS  Google Scholar 

  39. Huang, Y.-w et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    CAS  Google Scholar 

  40. Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

    CAS  Google Scholar 

  41. Wood, M. G. et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica 5, 233–236 (2018).

    CAS  Google Scholar 

  42. Li, E., Gao, Q., Chen, R. T. & Wang, A. X. Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume. Nano Lett. 18, 1075–1081 (2018).

    CAS  Google Scholar 

  43. Liu, X. et al. Epsilon-near-zero Si slot-waveguide modulator. ACS Photonics 5, 4484–4490 (2018).

    CAS  Google Scholar 

  44. Li, Y. et al. On-chip zero-index metamaterials. Nat. Photonics 9, 738–742 (2015).

    CAS  Google Scholar 

  45. Noginov, M. A. et al. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 2009–2012 (2011).

    Google Scholar 

  46. Stegeman, G. I., Wright, E. M., Finlayson, N., Zanoni, R. & Seaton, C. T. Third order nonlinear integrated optics. J. Light. Technol. 6, 953–970 (1988).

    CAS  Google Scholar 

  47. Eggleton, B. J. et al. Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photonics Rev. 6, 97–114 (2012).

    CAS  Google Scholar 

  48. Reshef, O. et al. Beyond the perturbative description of the nonlinear optical response of low-index materials. Opt. Lett. 42, 3225–3228 (2017).

    CAS  Google Scholar 

  49. Maier, S. A. Plasmonics: Fundamentals and Applications. (Springer, 2007).

  50. Derkachova, A., Kolwas, K. & Demchenko, I. Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11, 941–951 (2016).

    CAS  Google Scholar 

  51. Guo, P. et al. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat. Commun. 7, 12892 (2016).

    CAS  Google Scholar 

  52. Carnemolla, E. G. et al. Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. Opt. Mater. Express 8, 3392–3400 (2018).

    CAS  Google Scholar 

  53. Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat. Commun. 8, 472 (2017).

    Google Scholar 

  54. Liu, X. et al. Tuning of plasmons in transparent conductive oxides by carrier accumulation. ACS Photonics 5, 1493–1498 (2018).

    CAS  Google Scholar 

  55. Elim, H. I., Ji, W. & Zhu, F. Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films. Appl. Phys. B 82, 439–442 (2006).

    CAS  Google Scholar 

  56. Liu, X. et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Appl. Phys. Lett. 105, 181117 (2014).

    Google Scholar 

  57. Guo, P., Schaller, R. D., Ketterson, J. B. & Chang, R. P. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics 10, 267–273 (2016).

    CAS  Google Scholar 

  58. de Ceglia, D. et al. Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms. Sci. Rep. 8, 9335 (2018).

    Google Scholar 

  59. Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).

    CAS  Google Scholar 

  60. Kaipurath, R. M. et al. Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials. Sci. Rep. 6, 27700 (2016).

    CAS  Google Scholar 

  61. Lee, Y. U. et al. Strong nonlinear optical response in the visible spectral range with epsilon-near-zero organic thin films. Adv. Opt. Mater. 6, 1701400 (2018).

    Google Scholar 

  62. Vezzoli, S. et al. Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2017).

    Google Scholar 

  63. Campione, S., de Ceglia, D., Vincenti, M. A., Scalora, M. & Capolino, F. Electric field enhancement in ϵ-near-zero slabs under TM-polarized oblique incidence. Phys. Rev. B 87, 035120 (2013).

    Google Scholar 

  64. Kamandi, M., Guclu, C., Luk, T. S., Wang, G. T. & Capolino, F. Giant field enhancement in longitudinal epsilon-near-zero films. Phys. Rev. B 95, 161105(R) (2017).

    Google Scholar 

  65. Vincenti, M. A. et al. Second-harmonic generation in longitudinal epsilon-near-zero materials. Phys. Rev. B 96, 045438 (2017).

    Google Scholar 

  66. Taliercio, T., Guilengui, V. N., Cerutti, L., Tournié, E. & Greffet, J.-J. Brewster ‘mode' in highly doped semiconductor layers: an all-optical technique to monitor doping concentration. Opt. Express 22, 24294–24303 (2014).

    CAS  Google Scholar 

  67. Vassant, S., Hugonin, J.-P., Marquier, F. & Greffet, J.-J. Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–23977 (2012).

    Google Scholar 

  68. Luk, T. S. et al. Directional perfect absorption using deep subwavelength low-permittivity films. Phys. Rev. B 90, 085411 (2014).

    Google Scholar 

  69. Newman, W. D. et al. Ferrell–Berreman modes in plasmonic epsilon-near-zero media. ACS Photonics 2, 2–7 (2014).

    Google Scholar 

  70. Bello, F. et al. Combining ϵ-near-zero behavior and stopped light energy bands for ultra-low reflection and reduced dispersion of slow light. Sci. Rep. 7, 8702 (2017).

    Google Scholar 

  71. Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).

    Google Scholar 

  72. Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 1, 484–588 (2009).

    CAS  Google Scholar 

  73. Silveirinha, M. G. & Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ-near-zero metamaterials. Phys. Rev. B 76, 245109 (2007).

    Google Scholar 

  74. Javani, M. H. & Stockman, M. I. Real and imaginary properties of epsilon-near-zero materials. Phys. Rev. Lett. 117, 107404 (2016).

    Google Scholar 

  75. Hamachi, Y., Kubo, S. & Baba, T. Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. Opt. Lett. 34, 1072–1074 (2009).

    CAS  Google Scholar 

  76. Monat, C. et al. Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt. Express 18, 22915–22927 (2010).

    CAS  Google Scholar 

  77. Boyd, R. W. Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited]. J. Opt. Soc. Am. B 28, A38–A44 (2011).

    CAS  Google Scholar 

  78. Powell, D. A. et al. Nonlinear control of tunneling through an epsilon-near-zero channel. Phys. Rev. B 79, 245135 (2009).

    Google Scholar 

  79. Marini, A. & Garcia De Abajo, F. J. Self-organization of frozen light in near-zero-index media with cubic nonlinearity. Sci. Rep. 6, 20088 (2016).

    CAS  Google Scholar 

  80. Khurgin, J. B. Everything is slow light. In Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology vol. 10934, 109340 W (International Society for Optics and Photonics, 2019).

  81. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    CAS  Google Scholar 

  82. Johnson, P. & Christy, R. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 9, 5056–5070 (1974).

    CAS  Google Scholar 

  83. Reutzel, M., Li, A., Gumhalter, B. & Petek, H. Excitation of two-photon photoemission where epsilon is near zero on Ag (111). Preprint at arXiv https://arxiv.org/abs/1809.02101 (2018).

  84. West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).

    CAS  Google Scholar 

  85. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    CAS  Google Scholar 

  86. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011).

    CAS  Google Scholar 

  87. Pradhan, A. K. et al. Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications. Sci. Rep. 4, 6415 (2014).

    CAS  Google Scholar 

  88. Calzolari, A., Ruini, A. & Catellani, A. Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives. ACS Photonics 1, 703–709 (2014).

    CAS  Google Scholar 

  89. Riley, C. T. et al. High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials. Small 12, 892–901 (2016).

    CAS  Google Scholar 

  90. Guo, Q. et al. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater. 29, 1700754 (2017).

    Google Scholar 

  91. Wang, Y. et al. Tunability of indium tin oxide materials for mid-infrared plasmonics applications. Opt. Mater. Express 7, 2727–2739 (2017).

    CAS  Google Scholar 

  92. Shkondin, E. et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials. Opt. Mater. Express 7, 1606–1627 (2017).

    CAS  Google Scholar 

  93. Anopchenko, A., Tao, L., Arndt, C. & Lee, H. W. H. Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness. ACS Photonics 5, 2631–2637 (2018).

    CAS  Google Scholar 

  94. Anopchenko, A., Gurung, S., Tao, L., Arndt, C. & Lee, H. W. H. Atomic layer deposition of ultra-thin and smooth Al-doped ZnO for zero-index photonics. Mater. Res. Express 5, 014012 (2018).

    Google Scholar 

  95. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS  Google Scholar 

  96. Zhang, L. et al. Correlated metals as transparent conductors. Nat. Mater. 15, 204–210 (2016).

    CAS  Google Scholar 

  97. Wen, X. et al. Doubly enhanced second harmonic generation through structural and epsilon-near-zero resonances in TiN nanostructures. ACS Photonics 5, 2087–2093 (2018).

    CAS  Google Scholar 

  98. Gu, L., Livenere, J., Zhu, G., Narimanov, E. E. & Noginov, M. A. Quest for organic plasmonics. Appl. Phys. Lett. 103, 021104 (2013).

    Google Scholar 

  99. Woo, B. H. et al. Dispersion control of excitonic thin films for tailored superabsorption in the visible region. ACS Photonics 4, 1138–1145 (2017).

    CAS  Google Scholar 

  100. Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414–420 (2015).

    CAS  Google Scholar 

  101. Spitzer, W. G., Kleinman, D. & Walsh, D. Infrared properties of hexagonal silicon carbide. Phys. Rev. 113, 127–132 (1959).

    CAS  Google Scholar 

  102. Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016).

    CAS  Google Scholar 

  103. Kischkat, J. et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789–6798 (2012).

    CAS  Google Scholar 

  104. Shahsafi, A. et al. Mid-infrared optics using dielectrics with refractive indices below unity. Phys. Rev. Appl. 10, 034019 (2018).

    CAS  Google Scholar 

  105. Ou, J.-Y. et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 5, 5139 (2014).

    CAS  Google Scholar 

  106. Braic, L. et al. Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl. Mater. Interfaces 9, 29857–29862 (2017).

    CAS  Google Scholar 

  107. Pollard, R. J. et al. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009).

    CAS  Google Scholar 

  108. Lepeshkin, N. N., Schweinsberg, A., Piredda, G., Bennink, R. S. & Boyd, R. W. Enhanced nonlinear optical response of one-dimensional metal–dielectric photonic crystals. Phys. Rev. Lett. 93, 123902 (2004).

    Google Scholar 

  109. Subramania, G., Fischer, A. J. & Luk, T. S. Optical properties of metal–dielectric based epsilon near zero metamaterials. Appl. Phys. Lett. 101, 241107 (2012).

    Google Scholar 

  110. Yang, X. et al. Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs. Opt. Express 21, 23631–23639 (2013).

    CAS  Google Scholar 

  111. Maas, R., Parsons, J., Engheta, N. & Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 7, 907–912 (2013).

    CAS  Google Scholar 

  112. Cai, W. & Shalaev, V. Optical Metamaterials (Springer, 2010).

  113. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 958–967 (2013).

    Google Scholar 

  114. Caligiuri, V., Palei, M., Imran, M., Manna, L. & Krahne, R. Planar double-epsilon-near-zero cavities for spontaneous emission and Purcell effect enhancement. ACS Photonics 5, 2287–2294 (2018).

    CAS  Google Scholar 

  115. Pendry, J., Holden, A., Robbins, D. & Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Google Scholar 

  116. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    CAS  Google Scholar 

  117. Yun, S. et al. Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano 6, 4475–4482 (2012).

    CAS  Google Scholar 

  118. Pendry, J., Brien, S. O. & Pendry, J. B. Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002).

    Google Scholar 

  119. Holloway, C. L., Kuester, E. F., Baker-Jarvis, J. & Kabos, P. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

    Google Scholar 

  120. Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

    CAS  Google Scholar 

  121. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    CAS  Google Scholar 

  122. Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 7, 791–795 (2013).

    CAS  Google Scholar 

  123. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    CAS  Google Scholar 

  124. Vulis, D. I. et al. Monolithic CMOS-compatible zero-index metamaterials. Opt. Express 25, 12381–12399 (2017).

    CAS  Google Scholar 

  125. Kita, S. et al. On-chip all-dielectric fabrication-tolerant zero-index metamaterials. Opt. Express 25, 8326–8334 (2017).

    CAS  Google Scholar 

  126. Reshef, O. et al. Direct observation of phase-free propagation in a silicon waveguide. ACS Photonics 4, 2385–2389 (2017).

    CAS  Google Scholar 

  127. Schulz, S. A. et al. Optical response of dipole antennas on an epsilon-near-zero substrate. Phys. Rev. A 93, 063846 (2016).

    Google Scholar 

  128. Alam, M. Z., Schulz, S. A., Upham, J., De Leon, I. & Boyd, R. W. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics 12, 79–83 (2018).

    CAS  Google Scholar 

  129. Hendrickson, J. R. et al. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photonics 5, 776–781 (2018).

    CAS  Google Scholar 

  130. Guo, P., Chang, R. P. & Schaller, R. D. Transient negative optical nonlinearity of indium oxide nanorod arrays in the full-visible range. ACS Photonics 4, 1494–1500 (2017).

    CAS  Google Scholar 

  131. Taghinejad, M. et al. Ultrafast control of phase and polarization of light expedited by hot-electron transfer. Nano Lett. 18, 5544–5551 (2018).

    CAS  Google Scholar 

  132. Howes, A., Wang, W., Kravchenko, I. & Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787–792 (2018).

    Google Scholar 

  133. Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B. & Engheta, N. Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017).

    CAS  Google Scholar 

  134. Kern, C. et al. Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets. Appl. Phys. A 104, 15–21 (2011).

    CAS  Google Scholar 

  135. Neira, A. D. et al. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015).

    CAS  Google Scholar 

  136. Bennink, R. S., Yoon, Y.-K., Boyd, R. W. & Sipe, J. E. Accessing the optical nonlinearity of metals with metal–dielectric photonic bandgap structures. Opt. Lett. 24, 1416–1418 (1999).

    CAS  Google Scholar 

  137. Ferrera, M. & Carnemolla, E. G. Ultra-fast transient plasmonics using transparent conductive oxides. J. Opt. 20, 024007 (2018).

    Google Scholar 

  138. Benis, S., Hagan, D. J. & Van Stryland, E. W. Enhancement mechanism of nonlinear optical response of transparent conductive oxides at epsilon-near-zero. Conference on Lasers and Electro-Optics, FF2E.1 (OSA, 2018).

  139. Ferdinandus, M. R., Hu, H., Reichert, M., Hagan, D. J. & Van Stryland, E. W. Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction. Opt. Lett. 38, 3518–3521 (2013).

    Google Scholar 

  140. Ferdinandus, M. R., Reed, J. M., Averett, K. L., Hopkins, F. K. & Urbas, A. Analysis of beam deflection measurements in the presence of linear absorption. Opt. Mater. Express 7, 1598–1605 (2017).

    CAS  Google Scholar 

  141. Vincenti, M. A., de Ceglia, D., Haus, J. W. & Scalora, M. Harmonic generation in multiresonant plasma films. Phys. Rev. A 88, 043812 (2013).

    Google Scholar 

  142. Vincenti, M. A., de Ceglia, D., Angelis, C. D. & Scalora, M. Surface-plasmon excitation of second-harmonic light: emission and absorption. J. Opt. Soc. Am. B 34, 633–641 (2017).

    CAS  Google Scholar 

  143. Scalora, M. et al. Harmonic generation from metal–oxide and metal–metal boundaries. Phys. Rev. A 98, 023837 (2018).

    CAS  Google Scholar 

  144. de Ceglia, D., Vincenti, M. A., Akozbek, N., Bloemer, M. J. & Scalora, M. Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions. Opt. Express 25, 3980–3990 (2017).

    Google Scholar 

  145. Sundgren, J. E., Johansson, B. O., Karlsson, S. E. & Hentzell, H. T. G. Mechanisms of reactive sputtering of titanium nitride I: influence of process parameters on film. Thin Solid Films 105, 367–384 (1983).

    CAS  Google Scholar 

  146. Batzill, M. & Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005).

    CAS  Google Scholar 

  147. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    CAS  Google Scholar 

  148. Michaeli, L., Keren-Zur, S., Avayu, O., Suchowski, H. & Ellenbogen, T. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett. 118, 243904 (2017).

    Google Scholar 

  149. Hendrickson, J. R. et al. Plasmonic enhancement of epsilon-near-zero modes. Advanced Photonics Congress NpTh4C.2 (OSA, 2018).

  150. Taghinejad, M. et al. Hot-electron-assisted femtosecond all-optical modulation in plasmonics. Adv. Mater. 30, 1704915 (2018).

    Google Scholar 

  151. Kim, J. et al. Dynamic control of nano-cavities with tunable metal oxides. Nano Lett. 18, 740–746 (2017).

    Google Scholar 

  152. Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    CAS  Google Scholar 

  153. Mattiucci, N., Bloemer, M. J. & D’Aguanno, G. Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal. Opt. Express 22, 6381–6390 (2014).

    Google Scholar 

  154. Reshef, O. et al. Phase-matching in Dirac-cone-based zero-index metamaterials. CLEO: Applicatins and Technology, jTu5A.53. (OSA, 2016).

  155. Vincenti, M. A., de Ceglia, D. & Scalora, M. Nonlinear dynamics in low permittivity media: the impact of losses. Opt. Express 21, 29949–29954 (2013).

    CAS  Google Scholar 

  156. Kim, K. H. Unity-order nonlinear optical index change in epsilon-near-zero composite materials of gain media and metal nanoparticles. Ann. Phys. 530, 1700259 (2018).

    Google Scholar 

  157. Berini, P. & De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 6, 16–24 (2012).

    CAS  Google Scholar 

  158. De Leon, I. & Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4, 382–387 (2010).

    Google Scholar 

  159. Campione, S. & Capolino, F. Composite material made of plasmonic nanoshells with quantum dot cores: Loss-compensation and ϵ-near-zero physical properties. Nanotechnology 23, 235703 (2012).

    Google Scholar 

  160. Vincenti, M. A., Campione, S., De Ceglia, D., Capolino, F. & Scalora, M. Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells. New J. Phys. 14, 103016 (2012).

    Google Scholar 

  161. Rizza, C., Ciattoni, A. & Palange, E. Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero. Phys. Rev. A 83, 053805 (2011).

    Google Scholar 

  162. Fleury, R. & Alù, A. Enhanced superradiance in epsilon-near-zero plasmonic channels. Phys. Rev. B 87, 201101 (2013).

    Google Scholar 

  163. Prain, A., Vezzoli, S., Westerberg, N., Roger, T. & Faccio, D. Spontaneous photon production in time-dependent epsilon-near-zero materials. Phys. Rev. Lett. 118, 133904 (2017).

    CAS  Google Scholar 

  164. Jahani, S., Zhao, H. & Jacob, Z. Switching Purcell effect with nonlinear epsilon-near-zero media. Appl. Phys. Lett. 113, 021103 (2018).

    Google Scholar 

  165. Ciattoni, A., Marini, A. & Rizza, C. All-optical modulation in wavelength-sized epsilon-near-zero media. Opt. Lett. 41, 3102–3105 (2016).

    Google Scholar 

  166. Neira, A., Wurtz, G. & Zayats, A. All-optical switching in Si photonic waveguides with epsilon-near-zero resonant cavity. Photonics Res. 6, B1–B5 (2017).

    Google Scholar 

  167. Ciattoni, A., Rizza, C. & Palange, E. All-optical active plasmonic devices with memory and power-switching functionalities based on ϵ-near-zero nonlinear metamaterials. Phys. Rev. A 83, 43813 (2011).

    Google Scholar 

  168. Abdelatty, M. Y., Badr, M. M. & Swillam, M. A. High-speed hybrid plasmonic electro-optical absorption modulator exploiting epsilon-near-zero effect in indium-tin-oxide. J. Nanophotonics 12, 036011 (2018).

    Google Scholar 

  169. Qiu, X., Ruan, X., Li, Y. & Zhang, F. Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator. Opt. Express 26, 13902–13914 (2018).

    CAS  Google Scholar 

  170. Sinatkas, G. & Kriezis, E. E. Silicon-photonic electro-optic phase modulators integrating transparent conducting oxides. IEEE J. Quantum Electron. 54, 8400208 (2018).

    Google Scholar 

  171. Ricard, D., Roussignol, P. & Flytzanis, C. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett. 10, 511–513 (1985).

    CAS  Google Scholar 

  172. Vogel, E. M., Weber, M. J. & Krol, D. Nonlinear optical phenomena in glass. Phys. Chem. Glass. 32, 231–254 (1991).

    CAS  Google Scholar 

  173. Bloembergen, N., Burns, W. K. & Matsuoka, M. Reflected third harmonic generated by picosecond laser pulses. Opt. Commun. 1, 195–198 (1969).

    CAS  Google Scholar 

  174. Smith, D. D. et al. z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys. 86, 6200–6205 (1999).

    CAS  Google Scholar 

  175. De Leon, I., Shi, Z., Liapis, A. C. & Boyd, R. W. Measurement of the complex nonlinear optical response of a surface plasmon-polariton. Opt. Lett. 39, 2274–2277 (2014).

    Google Scholar 

  176. Ueda, N. et al. Third-order nonlinear optical susceptibilities of electroconductive oxide thin films. Appl. Phys. Lett. 59, 502–503 (1991).

    CAS  Google Scholar 

  177. Sheik-Bahae, M., Said, A. A. & Van Stryland, E. W. High-sensitivity, single-beam n 2 measurements. Opt. Lett. 14, 955–957 (1989).

    CAS  Google Scholar 

  178. Sheik-Bahae, M., Said, A., Wei, T.-H., Hagan, D. & Van Stryland, E. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support through the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs programme and the Canada First Research Excellence Fund. O.R. acknowledges the support of the Banting Postdoctoral Fellowship of the NSERC. I.D.L. acknowledges support from CONACyT (Ciencia Básica) grant no. 286150. R.W.B. also acknowledges support from the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) Nascent programme and from the US Army Research Office.

Author information

Authors and Affiliations

Authors

Contributions

O.R., I.D.L. and M.Z.A. researched data for the article. O.R., I.D.L., M.Z.A. and R.W.B. contributed to manuscript preparation, revision and editing.

Corresponding authors

Correspondence to Orad Reshef or Robert W. Boyd.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshef, O., De Leon, I., Alam, M.Z. et al. Nonlinear optical effects in epsilon-near-zero media. Nat Rev Mater 4, 535–551 (2019). https://doi.org/10.1038/s41578-019-0120-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0120-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing