Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths

Abstract

Widely tunable and narrow-linewidth lasers at visible wavelengths are necessary for applications such as quantum optics, optical clocks and atomic and molecular physics. At present, the lasers are benchtop systems, which precludes these technologies from being used outside research laboratories. Here we demonstrate a chip-scale visible laser platform that enables tunable and narrow-linewidth lasers from near-ultraviolet to near-infrared wavelengths. Using micrometre-scale silicon nitride resonators and commercial Fabry–Pérot laser diodes, we achieve coarse tuning up to 12.5 nm and mode-hop-free fine tuning up to 33.9 GHz with intrinsic linewidths down to a few kilohertz. In addition, we show fine-tuning speeds of up to 267 GHz µs−1, fibre-coupled powers of up to 10 mW and typical side-mode suppression ratios above 35 dB. These specifications of our chip-scale lasers have only been achieved previously using large state-of-the-art benchtop laser systems, making our lasers stand out as powerful tools for the next generation of visible-light technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chip-scale, multi-wavelength visible lasers and applications of visible light.
Fig. 2: Example of chip-scale laser (blue wavelength range) and its operation.
Fig. 3: Coarse and fine wavelength tuning of the chip-scale lasers from near-UV to near-IR wavelengths.
Fig. 4: Fine frequency tuning speeds via microheater and laser-current modulations.
Fig. 5: Linewidth measurements of the chip-scale lasers from near-UV to near-IR wavelengths.

Similar content being viewed by others

Data availability

The experimental dataset and its analysis are provided within the paper and its Supplementary Information, and the data are available from the corresponding authors upon reasonable request.

References

  1. Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    Article  ADS  Google Scholar 

  2. Moody, G. et al. Roadmap on integrated quantum photonics. JPhys. Photonics 4, 012501 (2022).

    Article  ADS  Google Scholar 

  3. Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    Article  ADS  Google Scholar 

  4. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  5. Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

    Article  ADS  Google Scholar 

  6. Tomza, M. et al. Cold hybrid ion–atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    Article  ADS  Google Scholar 

  7. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  ADS  Google Scholar 

  8. Mitra, D., Leung, K. H. & Zelevinsky, T. Quantum control of molecules for fundamental physics. Phys. Rev. A 105, 040101 (2022).

    Article  ADS  Google Scholar 

  9. Will, S. et al. Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465, 197–201 (2010).

    Article  ADS  Google Scholar 

  10. Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article  ADS  Google Scholar 

  11. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019).

    Article  ADS  Google Scholar 

  12. Moriya, P. H. et al. Comparison between 403 nm and 497 nm repumping schemes for strontium magneto-optical traps. J. Phys. Commun. 2, 125008 (2018).

    Article  Google Scholar 

  13. Ding, R. et al. Creation of vibrationally-excited ultralong-range Rydberg molecules in polarized and unpolarized cold gases of 87Sr. J. Phys. B 53, 014002 (2019).

    Article  ADS  Google Scholar 

  14. Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article  ADS  Google Scholar 

  15. Bowden, W. et al. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock. Sci. Rep. 9, 11704 (2019).

    Article  ADS  Google Scholar 

  16. Bongs, K. et al. Development of a strontium optical lattice clock for the SOC mission on the ISS. C. R. Phys. 16, 553–564 (2015).

    Article  Google Scholar 

  17. Lai, Y.-H. et al. 780 nm narrow-linewidth self-injection-locked WGM lasers. Proc. SPIE 11266, 112660O (2020).

    Google Scholar 

  18. Savchenkov, A. A. et al. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep. 10, 16494 (2020).

    Article  Google Scholar 

  19. Donvalkar, P. S., Savchenkov, A. & Matsko, A. Self-injection locked blue laser. J. Opt. 20, 045801 (2018).

    Article  ADS  Google Scholar 

  20. Savchenkov, A. A. et al. Self-injection locking efficiency of a UV Fabry–Perot laser diode. Opt. Lett. 44, 4175–4178 (2019).

    Article  ADS  Google Scholar 

  21. Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021).

    Article  ADS  Google Scholar 

  22. Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960–6969 (2022).

    Article  ADS  Google Scholar 

  23. Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021).

    Article  ADS  Google Scholar 

  24. Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755–756 (2021).

    Article  ADS  Google Scholar 

  25. Corato-Zanarella, M. et al. Overcoming the trade-off between loss and dispersion in microresonators. In Conference on Lasers and Electro-Optics paper STh1J.1 (Optica Publishing Group, 2020); https://doi.org/10.1364/CLEO_SI.2020.STh1J.1

  26. Liang, G. et al. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics 15, 908–913 (2021).

    Article  ADS  Google Scholar 

  27. Li, X., Deng, Q. & Zhou, Z. Low loss, high-speed single-mode half-disk resonator. Opt. Lett. 39, 3810–3813 (2014).

    Article  ADS  Google Scholar 

  28. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  ADS  Google Scholar 

  29. Payne, F. P. & Lacey, J. P. R. A theoretical analysis of scattering loss from planar optical waveguides. Opt. Quantum Electron. 26, 977–986 (1994).

    Article  Google Scholar 

  30. Gil-Molina, A. et al. Robust hybrid III-V/Si3N4 laser with kHz-linewidth and GHz-pulling range. In Conference on Lasers and Electro-Optics paper STu3M.4 (Optica Publishing Group, 2020); https://doi.org/10.1364/CLEO_SI.2020.STu3M.4

  31. Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167–28178 (2017).

    Article  ADS  Google Scholar 

  32. Galiev, R. R. et al. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators. Opt. Express 26, 30509–30522 (2018).

    Article  ADS  Google Scholar 

  33. Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).

    Article  ADS  Google Scholar 

  34. Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article  ADS  Google Scholar 

  35. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  36. Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Preprint at https://arxiv.org/abs/2112.02036 (2022).

  37. Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022).

  38. Guo, J. et al. Chip-based laser with 1-hertz integrated linewidth. Sci. Adv. 8, eabp9006 (2022).

  39. Shamim, M. H. M. et al. Investigation of self-injection locked visible laser diodes for high bit-rate visible light communication. IEEE Photonics J. 10, 7905611 (2018).

    Article  Google Scholar 

  40. Shamim, M. H. M., Ng, T. K., Ooi, B. S. & Khan, M. Z. M. Tunable self-injection locked green laser diode. Opt. Lett. 43, 4931–4934 (2018).

    Article  ADS  Google Scholar 

  41. Hult, J., Burns, I. S. & Kaminski, C. F. Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers. Appl. Opt. 44, 3675–3685 (2005).

    Article  ADS  Google Scholar 

  42. Schkolnik, V., Fartmann, O. & Krutzik, M. An extended-cavity diode laser at 497 nm for laser cooling and trapping of neutral strontium. Laser Phys. 29, 035802 (2019).

    Article  ADS  Google Scholar 

  43. Li, C. et al. High-speed multi-pass tunable diode laser absorption spectrometer based on frequency-modulation spectroscopy. Opt. Express 26, 29330–29339 (2018).

    Article  ADS  Google Scholar 

  44. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  Google Scholar 

  45. Idjadi, M. H. & Aflatouni, F. Integrated Pound–Drever–Hall laser stabilization system in silicon. Nat. Commun. 8, 1209 (2017).

    Article  ADS  Google Scholar 

  46. Spencer, D. T., Davenport, M. L., Komljenovic, T., Srinivasan, S. & Bowers, J. E. Stabilization of heterogeneous silicon lasers using Pound–Drever–Hall locking to Si3N4 ring resonators. Opt. Express 24, 13511–13517 (2016).

    Article  ADS  Google Scholar 

  47. Stéphan, G. M., Tam, T. T., Blin, S., Besnard, P. & Têtu, M. Laser line shape and spectral density of frequency noise. Phys. Rev. A 71, 043809 (2005).

    Article  ADS  Google Scholar 

  48. Kharas, D. et al. High-power (>300 mW) on-chip laser with passively aligned silicon-nitride waveguide DBR cavity. IEEE Photonics J. 12, 1504612 (2020).

    Article  Google Scholar 

  49. Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    Article  ADS  Google Scholar 

  50. Nielsen, M. D., Folkenberg, J. R., Mortensen, N. A. & Bjarklev, A. Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers. Opt. Express 12, 430–435 (2004).

    Article  ADS  Google Scholar 

  51. Hong, S. & Ali, S. Compact arrayed waveguide gratings for visible wavelengths based on silicon nitride. Ukr. J. Phys. Opt. 18, 239 (2017).

    Article  Google Scholar 

  52. Andrews, J. R. Enhanced thermal stability of single longitudinal mode coupled cavity lasers. Appl. Phys. Lett. 47, 71–73 (1985).

    Article  ADS  Google Scholar 

  53. Wieman, C. E. & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991).

    Article  ADS  Google Scholar 

  54. Doret, S. C. Simple, low-noise piezo driver with feed-forward for broad tuning of external cavity diode lasers. Rev. Sci. Instrum. 89, 023102 (2018).

    Article  ADS  Google Scholar 

  55. Dutta, S., Elliott, D. S. & Chen, Y. P. Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating. Appl. Phys. B 106, 629–633 (2012).

    Article  ADS  Google Scholar 

  56. Spencer, D. T., Bauters, J. F., Heck, M. J. R. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014).

    Article  ADS  Google Scholar 

  57. Ji, X. et al. Exploiting ultralow loss multimode waveguides for broadband frequency combs. Laser Photonics Rev. 15, 2000353 (2021).

    Article  ADS  Google Scholar 

  58. Antman, Y. et al. High power on-chip integrated laser. Preprint at https://arxiv.org/abs/2207.06279 (2022).

  59. Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photonics 7, 046108 (2022).

    Article  ADS  Google Scholar 

  60. Petermann, K. Laser Diode Modulation and Noise (Springer, 1988).

Download references

Acknowledgements

This work was supported as part of the Novel Chip-Based Nonlinear Photonic Sources from the Visible to Mid-Infrared funded by the Army Research Office under award no. W911NF2110286. Fabrication of the photonic chips was done in part at the City University of New York Advanced Science Research Center Nanofabrication Facility, in part at the Columbia Nano Initiative Shared Lab Facilities at Columbia University, and in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant NNCI-2025233). M.C.S. is supported by a Facebook Fellowship Award. We thank A. Gaeta, S. Will and his group members M. Kwon and W. Yuan, and T. Zelevinsky and her students Q. Sun and K. H. Leung for lending critical pieces of equipment and for helpful discussions. We also thank U. D. Dave, G. R. Bhatt and Y. Antman for helpful discussions. M.C.-Z. thanks N. Janosik for her support and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.C.-Z. conceived the chip-scale visible lasers research project. M.C.-Z., A.G.-M. and A.M. had the initial discussions that shaped the first steps and goals of the project. With helpful suggestions from A.G.-M., M.C.-Z. designed the photonic devices and experiments. M.C.-Z., X.J. and M.C.S. fabricated the photonic chips. M.C.-Z. and A.M. performed experiments on some preliminary devices. M.C.-Z. performed the experimental measurements and analysed the results, with crucial suggestions from A.G.-M. along the way. M.C.-Z. prepared the manuscript. X.J., A.G.-M., M.C.S., A.M. and M.L. edited the manuscript. M.L. supervised the project.

Corresponding authors

Correspondence to Mateus Corato-Zanarella or Michal Lipson.

Ethics declarations

Competing interests

M.C.-Z., A.G.-M, X.J., M.C.S., A.M. and M.L. are named inventors on US provisional patent application 63/275,141 regarding the technology reported in this article.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6, Figs. 1–43 and Tables 1–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corato-Zanarella, M., Gil-Molina, A., Ji, X. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023). https://doi.org/10.1038/s41566-022-01120-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01120-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing