Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators

A Publisher Correction to this article was published on 06 April 2021

This article has been updated

Abstract

Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high Q factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz2 Hz−1 to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high Q factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CMOS-ready ultra-high-Q Si3N4 microresonators.
Fig. 2: Hybrid integrated narrow-linewidth laser based on the ultra-high-Q Si3N4 microresonator.
Fig. 3: Formation of mode-locked Kerr combs.
Fig. 4: Coherence of integrated mode-locked Kerr combs.
Fig. 5: Comparison of finesse and intrinsic Q factors of state-of-the-art integrated microresonators.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are available within the paper and its Supplementary Information. Further source data will be made available on reasonable request.

Code availability

The analysis codes will be made available on reasonable request.

Change history

References

  1. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  2. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    Article  ADS  Google Scholar 

  3. Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article  ADS  Google Scholar 

  4. Lai, Y.-H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photon. 14, 345–349 (2020).

    Article  ADS  Google Scholar 

  5. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  Google Scholar 

  6. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  ADS  Google Scholar 

  7. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  8. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  9. Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    Article  ADS  Google Scholar 

  10. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  ADS  Google Scholar 

  11. Hao, T. et al. Toward monolithic integration of OEOs: from systems to chips. J. Lightwave Technol. 36, 4565–4582 (2018).

    Article  ADS  Google Scholar 

  12. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    Article  ADS  Google Scholar 

  13. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs.Nat. Photon 14, 486–491 (2020).

    Article  Google Scholar 

  14. Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2015).

    Article  ADS  Google Scholar 

  15. Olsson, S. L. et al. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection. Opt. Express 26, 4522–4530 (2018).

    Article  ADS  Google Scholar 

  16. Dahmani, B., Hollberg, L. & Drullinger, R. Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12, 876–878 (1987).

    Article  ADS  Google Scholar 

  17. Hollberg, L. & Ohtsu, M. Modulatable narrow-linewidth semiconductor lasers. Appl. Phys. Lett. 53, 944–946 (1988).

    Article  ADS  Google Scholar 

  18. Hemmerich, A., McIntyre, D., Schropp, D.Jr, Meschede, D. & Hänsch, T. Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy. Opt. Commun. 75, 118–122 (1990).

    Article  ADS  Google Scholar 

  19. Li, H. & Abraham, N. Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator. IEEE J. Quantum Electron. 25, 1782–1793 (1989).

    Article  ADS  Google Scholar 

  20. Hjelme, D. R., Mickelson, A. R. & Beausoleil, R. G. Semiconductor laser stabilization by external optical feedback. IEEE J. Quantum Electron. 27, 352–372 (1991).

    Article  ADS  Google Scholar 

  21. Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 7371 (2015).

    Article  ADS  Google Scholar 

  22. Kondratiev, N. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167–28178 (2017).

    Article  ADS  Google Scholar 

  23. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article  ADS  Google Scholar 

  24. Spencer, D. T., Bauters, J. F., Heck, M. J. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014).

    Article  ADS  Google Scholar 

  25. Puckett, M. W. et al. Silicon nitride ring resonators with 0.123 dB/m loss and Q-factors of 216 million for nonlinear optical applications. In Proc. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) ce_11_3 (OSA, 2019).

  26. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  ADS  Google Scholar 

  27. Liu, J. et al. High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Preprint at https://arxiv.org/abs/2005.13949 (2020).

  28. Ye, Z., Twayana, K., Andrekson, P. A. & Torres-Company, V. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express 27, 35719–35727 (2019).

    Article  ADS  Google Scholar 

  29. Li, Q. et al. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform. Opt. Express 21, 18236–18248 (2013).

    Article  ADS  Google Scholar 

  30. Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

    Article  ADS  Google Scholar 

  31. Biberman, A., Shaw, M. J., Timurdogan, E., Wright, J. B. & Watts, M. R. Ultralow-loss silicon ring resonators. Opt. Lett. 37, 4236–4238 (2012).

    Article  ADS  Google Scholar 

  32. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  ADS  Google Scholar 

  33. Adar, R., Serbin, M. & Mizrahi, V. Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator. J. Lightwave Technol. 12, 1369–1372 (1994).

    Article  ADS  Google Scholar 

  34. Fan, Y. et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 28, 21713–21728 (2020).

    Article  ADS  Google Scholar 

  35. Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photonics 4, 111101 (2019).

    Article  ADS  Google Scholar 

  36. Xiang, C. et al. Narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).

    Article  ADS  Google Scholar 

  37. Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).

    Article  ADS  Google Scholar 

  38. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  39. Bauters, J. F. et al. Planar waveguides with less than 0.1 db/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    Article  ADS  Google Scholar 

  40. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Modal coupling in traveling-wave resonators. Opt. Lett. 27, 1669–1671 (2002).

    Article  ADS  Google Scholar 

  41. Savchenkov, A., Williams, S. & Matsko, A. On stiffness of optical self-injection locking. Photonics 5, 43 (2018).

    Article  Google Scholar 

  42. Wang, H., Wu, L., Yuan, Z. & Vahala, K. Towards milli-hertz laser frequency noise on a chip. Preprint at https://arxiv.org/abs/2010.09248 (2020).

  43. Kondratiev, N. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).

    Article  ADS  Google Scholar 

  44. Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article  ADS  Google Scholar 

  45. Lim, J. et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun. 8, 8 (2017).

    Article  ADS  Google Scholar 

  46. Wang, P.-H. et al. Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization. Opt. Express 21, 22441–22452 (2013).

    Article  ADS  Google Scholar 

  47. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  Google Scholar 

  48. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, aan8083 (2018).

    Article  Google Scholar 

  49. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  50. Liang, W. et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett. 39, 2920–2923 (2014).

    Article  ADS  Google Scholar 

  51. Lobanov, V., Lihachev, G., Kippenberg, T. & Gorodetsky, M. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express 23, 7713–7721 (2015).

    Article  ADS  Google Scholar 

  52. Godey, C., Balakireva, I. V., Coillet, A. & Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato–Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

    Article  ADS  Google Scholar 

  53. Lihachev, G. V. et al. Laser self-injection locked frequency combs in a normal GVD integrated microresonator. In Proc. Conference on Lasers and Electro-Optics, OSA Technical Digest STh1O.3 (OSA, 2020).

  54. Kondratiev, N. M. & Lobanov, V. E. Modulational instability and frequency combs in whispering-gallery-mode microresonators with backscattering. Phys. Rev. A 101, 013816 (2020).

    Article  ADS  Google Scholar 

  55. Kondratiev, N. M., Voloshin, A. S., Lobanov, V. E. & Bilenko, I. A. Numerical modelling of WGM microresonator Kerr frequency combs in self-injection locking regime. In Proc. Nonlinear Optics and its Applications 2020, Vol. 11358, 113580O (International Society for Optics and Photonics, 2020).

  56. Fülöp, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun. 9, 1598 (2018).

    Article  ADS  Google Scholar 

  57. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  58. Larson, M. et al. Narrow linewidth sampled-grating distributed Bragg reflector laser with enhanced side-mode suppression. In Proc. 2015 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2015).

  59. Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2016).

    Article  ADS  Google Scholar 

  60. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  61. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).

    Article  ADS  Google Scholar 

  62. Tanzilli, S. et al. On the genesis and evolution of integrated quantum optics. Laser Photon. Rev. 6, 115–143 (2012).

    Article  ADS  Google Scholar 

  63. Lee, H. et al. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 4, 2468 (2013).

    Article  ADS  Google Scholar 

  64. Puckett, M. W. et al. 422 million Q planar integrated all-waveguide resonator with a 3.4 billion absorption-limited Q and sub-MHz linewidth. Preprint at https://arxiv.org/abs/2009.07428 (2020).

Download references

Acknowledgements

We acknowledge support from the Defense Advanced Research Projects Agency (DARPA) under the DODOS (HR0011-15-C-055) and APHI (FA9453-19-C-0029) programmes and Anello Photonics.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived by W.J., Q.-F.Y., L.C., B.S. and H.W. The devices were designed by W.J. and A.F. Measurements were performed by W.J., Q.-F.Y., L.C., B.S. and H.W., with assistance from M.A.L., L.W. and M.G. Analysis of the results was conducted by W.J., Q.-F.Y. and H.W. The project was coordinated by Q.-F.Y. and L.C. under the supervision of J.E.B., K.J.V. and M.P. All authors participated in writing the manuscript.

Corresponding authors

Correspondence to Kerry J. Vahala or John E. Bowers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Andrey Matsko, Michael Watts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Yang, QF., Chang, L. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021). https://doi.org/10.1038/s41566-021-00761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00761-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing