Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spontaneous pulse formation in edgeless photonic crystal resonators

Abstract

Nonlinearity in complex systems leads to pattern formation through fundamental interactions between components. With integrated photonics, precision control of nonlinearity explores novel patterns and propels applications. In particular, Kerr-nonlinear resonators support stationary states—including Turing patterns—composed of a few interfering waves, and localized solitons composed of waves across a broad spectrum. Although Turing patterns emerge from an unstable Kerr resonator with sufficiently intense excitation, Kerr solitons do not form spontaneously under constant excitation, making this useful state challenging to access. Here we explore an edgeless photonic crystal resonator (PhCR) that enables spontaneous soliton formation in place of Turing patterns. We design the PhCR nanopattern for single-azimuthal-mode engineering of a group-velocity-dispersion defect that balances Kerr-nonlinear frequency shifts in favour of the soliton state. Our experiments establish PhCR solitons as modelocked pulses through ultraprecise optical-frequency measurements. We show that nanophotonics expand the palette for nonlinear engineering, enabling new phenomena and light sources.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mode structure for the Kerr resonator.
Fig. 2: Experimental evidence for spontaneous soliton formation.
Fig. 3: Optical spectra from PhCRs.
Fig. 4: Intensity and frequency noise measurements.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The simulation codes used in this study are available from the corresponding author on reasonable request.

References

  1. Hickstein, D. D. et al. High-harmonic generation in periodically poled waveguides. Optica 4, 1538–1544 (2017).

    Article  ADS  Google Scholar 

  2. Tadanagaa, O. et al. Efficient 3-m difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides. Appl. Phys. Lett. 88, 061101 (2006).

    Article  ADS  Google Scholar 

  3. Carr, L. D. & Brand, J. Spontaneous soliton formation and modulational instability in Bose–Einstein condensates. Phys. Rev. Lett. 92, 040401 (2004).

    Article  ADS  Google Scholar 

  4. Parteli, E. J. R., Andrade, J. S. Jr & Herrmann, H. J. Transverse instability of dunes. Phys. Rev. Lett. 107, 188001 (2011).

  5. Godey, C., Balakireva, I. V., Coillet, A. & Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato–Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

    Article  ADS  Google Scholar 

  6. Qi, Z. et al. Dissipative cnoidal waves (turing rolls) and the soliton limit in microring resonators. Optica 6, 1220–1232 (2019).

    Article  ADS  Google Scholar 

  7. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  8. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  9. Fülöp, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun. 9, 1598 (2018).

    Article  ADS  Google Scholar 

  10. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  11. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  Google Scholar 

  12. Yu, S.-P. et al. Tuning Kerr-soliton frequency combs to atomic resonances. Phys. Rev. Appl. 11, 044017 (2019).

    Article  ADS  Google Scholar 

  13. Kordts, A., Pfeiffer, M. H. P., Guo, H., Brasch, V. & Kippenberg, T. J. Higher order mode suppression in high-Q anomalous dispersion sin microresonators for temporal dissipative Kerr soliton formation. Opt. Lett. 41, 452–455 (2016).

    Article  ADS  Google Scholar 

  14. Lobanov, V., Lihachev, G., Kippenberg, T. J. & Gorodetsky, M. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Exp. 23, 7713–7721 (2015).

    Article  ADS  Google Scholar 

  15. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  16. Kocaman, S. et al. Zero phase delay in negative-refractive-index photonic crystal superlattices. Nat. Photon. 5, 499–505 (2011).

    Article  ADS  Google Scholar 

  17. Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 5, 5580 (2014).

    Article  ADS  Google Scholar 

  18. Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489–496 (2016).

    Article  ADS  Google Scholar 

  19. Petrovich, M. N., Poletti, F., van Brakel, A. & Richardson, D. J. Robustly single mode hollow core photonic bandgap fiber. Opt. Exp. 16, 6 (2008).

    Article  Google Scholar 

  20. Sharma, M., Konar, S. & Khan, K. R. Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power. J. Nanophoton. 9, 093073 (2015).

    Article  ADS  Google Scholar 

  21. Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photon. 3, 1647–1653 (2016).

    Article  Google Scholar 

  22. Kim, S. et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 8, 372 (2017).

    Article  ADS  Google Scholar 

  23. Moille, G., Li, Q., Kim, S., Westly, D. & Srinivasan, K. Phased-locked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett. 43, 2772–2775 (2018).

    Article  ADS  Google Scholar 

  24. McGarvey-Lechable, K. et al. Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators. Opt. Exp. 25, 3916–3926 (2017).

    Article  ADS  Google Scholar 

  25. Lu, X., Rogers, S., Jiang, W. C. & Lin, Q. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett. 105, 151104 (2014).

    Article  ADS  Google Scholar 

  26. Joannopoulos, J., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  ADS  Google Scholar 

  27. McGarvey-Lechable, K. & Bianucci, P. Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators. Opt. Exp. 22, 26032–26041 (2014).

    Article  ADS  Google Scholar 

  28. Herr, T., Gorodetsky, M. L. & Kippenberg, T. J. Dissipative Kerr solitons in optical microresonators. In Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers Ch. 6 (Wiley-VCH Verlag GmbH, 2015).

  29. Jung, H. et al. Kerr solitons with tantala ring resonators. In Proceedings to Nonlinear Optics ConferenceOSA Technical Digest NW2A.3 (The Optical Society, 2019).

  30. Stone, J. R. et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett. 24, 063902 (2018).

    Article  ADS  Google Scholar 

  31. Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Exp. 24, 29312–29320 (2016).

    Article  ADS  Google Scholar 

  32. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    Article  Google Scholar 

  33. Briles, T. C. et al. Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Opt. Lett. 43, 2933–2936 (2018).

    Article  ADS  Google Scholar 

  34. Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X 9, 031023 (2019).

    Google Scholar 

  35. Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).

    Article  Google Scholar 

  36. Matsko, A. B., Liang, W., Savchenkov, A. A., Eliyahu, D. & Maleki, L. Optical Cherenkov radiation in overmoded microresonators. Opt. Lett. 41, 2907–2910 (2016).

    Google Scholar 

  37. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  38. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  39. Bino, L. D. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    Article  ADS  Google Scholar 

  40. Balram, K. C. et al. The nanolithography toolbox. J. Res. Natl Inst. Stand. Technol. 121, 464–475 (2016).

    Article  Google Scholar 

  41. Bao, C. & Yang, C. Mode-pulling and phase-matching in broadband Kerr frequency comb generation. J. Opt. Soc. Am. B 31, 3074–3080 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the DARPA DODOS (all authors), and DRINQS and PIPES programmes (S.-P.Y., D.C.C., H.J., S.B.P.). We acknowledge the Boulder Microfabrication Facility, where the devices were fabricated. We thank T. Briles and J. Chiles for a careful reading of the manuscript. This work is a contribution of the US Government and is not subject to copyright. Mention of specific companies or trade names is for scientific communication only, and does not constitute an endorsement by NIST.

Author information

Authors and Affiliations

Authors

Contributions

S.-P.Y. contributed in the conception, design and fabrication, and performed the optical measurements and theoretical analysis. D.C.C. developed the simulation software and contributed to the theoretical understanding. H.J. initiated the development of the tantala material platform. G.T.M. provided discussions helpful to the conception. K.S. provided input on theory and fabrication development. S.B.P. contributed to the theoretical understanding and supervised the findings of this work. All authors provided feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Su-Peng Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Maxim Shcherbakov, Yun-Feng Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, SP., Cole, D.C., Jung, H. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photonics 15, 461–467 (2021). https://doi.org/10.1038/s41566-021-00800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00800-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing