Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy

Abstract

Super-resolution optical microscopy techniques have enabled the discovery and visualization of numerous phenomena in physics, chemistry and biology1,2,3. However, the highest resolution super-resolution techniques depend on nonlinear fluorescence phenomena and are thus inaccessible to the myriad applications that require reflective imaging4,5. One promising super-resolution technique is optical reassignment6, which so far has only shown potential for fluorescence imaging at low speeds. Here, we present novel advances in optical reassignment to adapt it for any scanning microscopy, including reflective imaging, and enable an order of magnitude faster image acquisition than previous optical reassignment techniques. We utilized these advances to implement optically reassigned scanning laser ophthalmoscopy, an in vivo super-resolution human retinal imaging device not reliant on confocal gating. Using this instrument, we achieved high-resolution imaging of living human retinal cone photoreceptor cells (determined by minimum foveal eccentricity) without adaptive optics or chemical dilation of the eye7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulation of the reassignment procedure and resulting resolution enhancement.
Fig. 2: ORSLO schematic.
Fig. 3: Wide-field versus ORSLO imaging of a 1951 USAF test target.
Fig. 4: Single-frame comparisons of WFESLO and ORSLO.
Fig. 5: WFESLO versus ORSLO retinal image mosaics.

Similar content being viewed by others

Code availability

The code used in this study is available at http://github.com/tdubose/ORSLO.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642 (2006).

    Article  ADS  Google Scholar 

  2. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  ADS  Google Scholar 

  3. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  ADS  Google Scholar 

  4. Pawley, J. Handbook of Biological Confocal Microscopy (Springer Science & Business Media, Berlin, 2010).

  5. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  ADS  Google Scholar 

  6. Roth, S., Sheppard, C., Wicker, K. & Heintzmann, R. Optical photon reassignment microscopy (OPRA). Opt. Nanoscopy 2, 5 (2013).

    Article  Google Scholar 

  7. Webb, R. H., Hughes, G. W. & Delori, F. C. Confocal scanning laser ophthalmoscope. Appl. Opt. 26, 1492–1499 (1987).

    Article  ADS  Google Scholar 

  8. Roorda, A. & Williams, D. R. The arrangement of the three cone classes in the living human eye. Nature 397, 520–522 (1999).

    Article  ADS  Google Scholar 

  9. DuBose, T. et al. Handheld adaptive optics scanning laser ophthalmoscope. Optica 5, 1027–1036 (2018).

    Article  Google Scholar 

  10. Rossi, E. A. et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc. Natl Acad. Sci. USA 114, 586–591 (2017).

    Article  ADS  Google Scholar 

  11. Liu, Z., Kurokawa, K., Zhang, F., Lee, J. J. & Miller, D. T. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc. Natl Acad. Sci. USA 114, 12803–12808 (2017).

    Article  ADS  Google Scholar 

  12. Carroll, J., Neitz, M., Hofer, H., Neitz, J. & Williams, D. R. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc. Natl Acad. Sci. USA 101, 8461–8466 (2004).

    Article  ADS  Google Scholar 

  13. Duncan, J. L. et al. High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest. Ophthalmol. Vis. Sci. 48, 3283–3291 (2007).

    Article  Google Scholar 

  14. Dubra, A. & Sulai, Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2, 1757–1768 (2011).

    Article  Google Scholar 

  15. Wilson, T. & Sheppard, C. Theory and Practice of Scanning Optical Microscopy (Academic Press, New York, 1984).

  16. De Luca, G. M. R. et al. Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4, 2644–2656 (2013).

    Article  Google Scholar 

  17. LaRocca, F. et al. In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe. Nat. Photon. 10, 580–584 (2016).

    Article  ADS  Google Scholar 

  18. Wilson, T. & Carlini, A. R. Size of the detector in confocal imaging systems. Opt. Lett. 12, 227–229 (1987).

    Article  ADS  Google Scholar 

  19. Merino, D., Duncan, J. L., Tiruveedhula, P. & Roorda, A. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2, 2189–2201 (2011).

    Article  Google Scholar 

  20. Zhang, Y., Poonja, S. & Roorda, A. MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt. Lett. 31, 1268–1270 (2006).

    Article  ADS  Google Scholar 

  21. Dubra, A. et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2, 1864–1876 (2011).

    Article  Google Scholar 

  22. Zou, W., Qi, X. & Burns, S. A. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed. Opt. Express 2, 1986–2004 (2011).

    Article  Google Scholar 

  23. Sredar, N., Fagbemi, O. E. & Dubra, A. Sub-Airy confocal adaptive optics scanning ophthalmoscopy. Transl. Vis. Sci. Technol. 7, 17 (2018).

    Article  Google Scholar 

  24. Merkle, C. W. et al. Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo. Opt. Lett. 43, 198–201 (2018).

    Article  ADS  Google Scholar 

  25. Sheppard, C. Super-resolution in confocal imaging. Optik 80, 53–54 (1988).

    Google Scholar 

  26. Sheppard, C. J. R., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38, 2889–2892 (2013).

    Article  ADS  Google Scholar 

  27. Gregor, I. et al. Rapid nonlinear image scanning microscopy. Nat. Methods 14, 1087–1089 (2017).

    Article  Google Scholar 

  28. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    Article  ADS  Google Scholar 

  29. Winter, P. W. et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica 1, 181–191 (2014).

    Article  Google Scholar 

  30. York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).

    Article  Google Scholar 

  31. Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging. Nat. Methods 14, 869–872 (2017).

    Article  Google Scholar 

  32. Yellott, J. I. Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing. Vis. Res. 22, 1205–1210 (1982).

    Article  Google Scholar 

  33. Cooper, R. F., Langlo, C. S., Dubra, A. & Carroll, J. Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images. Ophthalmol. Phys. Opt. 33, 540–549 (2013).

    Article  Google Scholar 

  34. Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990).

    Article  Google Scholar 

  35. Shemonski, N. D. et al. Computational high-resolution optical imaging of the living human retina. Nat. Photon. 9, 440–443 (2015).

    Article  ADS  Google Scholar 

  36. Kohl, S. et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat. Genet. 47, 757–765 (2015).

    Article  Google Scholar 

  37. Hollyfield, J. G. et al. Oxidative damage–induced inflammation initiates age-related macular degeneration. Nat. Med. 14, 194–198 (2008).

    Article  Google Scholar 

  38. Donnelly, W. J. & Roorda, A. Optimal pupil size in the human eye for axial resolution. J. Opt. Soc. Am. A 20, 2010–2015 (2003).

    Article  ADS  Google Scholar 

  39. Laser Institute of America American National Standard for Safe Use of Lasers ANSI Z136.1–2007 (American National Standards Institute, 2007).

  40. Thévenaz, P. & Unser, M. User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc. Res. Tech. 70, 135–146 (2007).

    Article  Google Scholar 

  41. Atchison, D. A. et al. Eye shape in emmetropia and myopia. Invest. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

    Article  Google Scholar 

  42. Chui, T. Y. P., Song, H. & Burns, S. A. Individual variations in human cone photoreceptor packing density: variations with refractive error. Invest. Ophthalmol. Vis. Sci. 49, 4679–4687 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Zhou and R. Qian for assistance. This research was supported in part by a grant from the National Institutes of Health (R21-EY027086).

Author information

Authors and Affiliations

Authors

Contributions

F.L. and T.B.D. designed and constructed the optical system and drafted the manuscript. T.B.D. collected and analysed data. S.F. and J.A.I provided overall guidance to the project, reviewed and edited the manuscript, and obtained funding to support this research.

Corresponding author

Correspondence to Joseph A. Izatt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information on the work and Supplementary Figures 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuBose, T.B., LaRocca, F., Farsiu, S. et al. Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy. Nat. Photonics 13, 257–262 (2019). https://doi.org/10.1038/s41566-019-0369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0369-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing