Narrow-linewidth lasers and optical frequency combs generated with mode-locked lasers have revolutionized optical frequency metrology. The advent of soliton Kerr frequency combs in compact crystalline or integrated ring optical microresonators has opened new horizons in academic research and industrial applications. These combs, as was naturally assumed, however, require narrow-linewidth, single-frequency pump lasers. We demonstrate that an ordinary cost-effective broadband Fabry–Pérot laser diode at the hundreds of milliwatts level, self-injection-locked to a microresonator, can be efficiently transformed to a powerful single-frequency, ultra-narrow-linewidth light source with further transformation to a coherent soliton comb oscillator. Our findings pave the way to the most compact and inexpensive highly coherent lasers, frequency comb sources, and comb-based devices for mass production.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All data used in this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

  2. 2.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  3. 3.

    Savchenkov, A. A., Matsko, A. B. & Maleki, L. On frequency combs in monolithic resonators. Nanophotonics 5, 363–391 (2016).

  4. 4.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

  5. 5.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

  6. 6.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

  7. 7.

    Yi, X., Yang, Q., Yang, K. Y., Suh, M. & Vahala, K. J. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

  8. 8.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

  9. 9.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

  10. 10.

    Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

  11. 11.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

  12. 12.

    Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

  13. 13.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

  14. 14.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

  15. 15.

    Fülöp, A. et al. Long-haul coherent communications using microresonator-based frequency combs. Opt. Express 25, 26678–26688 (2017).

  16. 16.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

  17. 17.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

  18. 18.

    Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. (in the press); preprint at https://arXiv.org/abs/1712.09526 (2017).

  19. 19.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. (in the press); preprint at https://arXiv.org/abs/1801.05174 (2018).

  20. 20.

    Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photon. https://doi.org/10.1038/s41566-018-0256-7 (2018).

  21. 21.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Imaging soliton dynamics in optical microcavities. Nat. Commun. 9, 3565 (2018).

  22. 22.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

  23. 23.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

  24. 24.

    Arafin, S. et al. Power-efficient Kerr frequency comb based tunable optical source. IEEE Photon. J. 9, 6600814 (2017).

  25. 25.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

  26. 26.

    Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).

  27. 27.

    Soma, D. et al. 10.16-peta-B/s dense SDM/WDM transmission over 6-Mode 19-core fiber across the C+L band. J. Lightwave Technol. 36, 1362–1368 (2018).

  28. 28.

    White, I. M. et al. Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE. Sens. J. 7, 28–35 (2007).

  29. 29.

    Dale, E. et al. Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications. In Imaging and Applied Optics 2014 JTu2C.3 (Optical Society of America, 2014).

  30. 30.

    Lai, W.-C., Chakravarty, S., Wang, X., Lin, C. & Chen, R. T. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Appl. Phys. Lett. 98, 023304 (2011).

  31. 31.

    Bloom, B. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

  32. 32.

    Prtljaga, N. et al. On-chip interference of single photons from an embedded quantum dot and an external laser. Appl. Phys. Lett. 108, 251101 (2016).

  33. 33.

    Aflatouni, F., Abiri, B., Rekhi, A. & Hajimiri, A. Nanophotonic coherent imager. Opt. Express 23, 5117–5125 (2015).

  34. 34.

    Vasil’ev, V. V. et al. High-coherence diode laser with optical feedback via a microcavity with ‘whispering gallery’ modes. Quantum Electron. 26, 657–658 (1996).

  35. 35.

    Vassiliev, V. et al. Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Commun. 158, 305–312 (1998).

  36. 36.

    Donvalkar, P. S., Savchenkov, A. & Matsko, A. Self-injection locked blue laser. J. Opt. 20, 045801 (2018).

  37. 37.

    Braginsky, V., Gorodetsky, M. & Ilchenko, V. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

  38. 38.

    Ilchenko, V. & Gorodetsky, M. Thermal nonlinear effects in optical whispering gallery microresonators. Laser. Phys. 2, 1004–1009 (1992).

  39. 39.

    Gorodetsky, M. L., Pryamikov, A. D. & Ilchenko, V. S. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B 17, 1051–1057 (2000).

  40. 40.

    Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 7371 (2015).

  41. 41.

    Oraevsky, A. N., Yarovitsky, A. V. & Velichansky, V. L. Frequency stabilisation of a diode laser by a whispering-gallery mode. Quantum. Electron. 31, 897–903 (2001).

  42. 42.

    Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167–28178 (2017).

  43. 43.

    Xie, Z. et al. Extended ultrahigh-Q-cavity diode laser. Opt. Lett. 40, 2596–2599 (2015).

  44. 44.

    Vassiliev, V., Il’ina, S. & Velichansky, V. Diode laser coupled to a high-Q microcavity via a GRIN lens. Appl. Phys. B 76, 521–523 (2003).

  45. 45.

    Liang, W. et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett. 35, 2822–2824 (2010).

  46. 46.

    Hensley, J. M. et al. Standoff detection from diffusely scattering surfaces using dual quantum cascade laser comb spectroscopy. In Proc. SPIE 10638, Ultrafast Bandgap Photonics III 1063820 (SPIE, 2018).

  47. 47.

    Shchekin, A. et al. Coherent anti-Stokes Raman scattering under frequency comb excitation. Appl. Opt. 57, 632–638 (2018).

  48. 48.

    Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).

  49. 49.

    Yi, X., Yang, Q.-F., Youl, K. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

  50. 50.

    Lobanov, V. E. et al. Harmonization of chaos into a soliton in Kerr frequency combs. Opt. Express 24, 27382–27394 (2016).

  51. 51.

    Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

  52. 52.

    Nakagawa, Y. et al. Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb. J. Opt. Soc. Am. B 33, 1913–1920 (2016).

  53. 53.

    Ilchenko, V. S. & Maleki, L.. Novel whispering-gallery resonators for lasers, modulators, and sensors. In Proc. SPIE 4270, Laser Resonators IV 4270–11 (SPIE, 2001)..

  54. 54.

    Bogatov, A., Eliseev, P. & Sverdlov, B. Anomalous interaction of spectral modes in a semiconductor laser. IEEE J. Quantum Electron. 11, 510–515 (1975).

  55. 55.

    Ahmed, M. & Yamada, M. Influence of instantaneous mode competition on the dynamics of semiconductor lasers. IEEE J. Quantum Electron. 38, 682–693 (2002).

  56. 56.

    Ahmed, M. & Yamada, M. Inducing single-mode oscillation in Fabry–Pérot InGaAsP lasers by applying external optical feedback. IET Optoelectron. 4, 133–141 (2010).

  57. 57.

    Stéphan, G. M., Tam, T. T., Blin, S., Besnard, P. & Têtu, M. Laser line shape and spectral density of frequency noise. Phys. Rev. A 71, 043809 (2005).

  58. 58.

    Demchenko, Y. A., Bilenko, I. A. & Gorodetsky, M. L. Optimisation of prism coupling with optical whispering-gallery type microresonators. Quantum Electron. 47, 743–747 (2017).

  59. 59.

    Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2016).

Download references


This publication was supported by the Russian Science Foundation (17-12-01413). G.V.L., N.G.P. and A.S.V. were partially supported by the Samsung Research Center in Moscow. The authors acknowledge valuable discussions with T. Kippenberg, K. Vahala and V. Vassiliev. The authors thank H.-S. Lee and Y.-G. Roh from the Samsung Advanced Institute of Technologies for help in establishing the project and its further support.

Author information


  1. Russian Quantum Center, Skolkovo, Russia

    • N. G. Pavlov
    • , G. V. Lihachev
    • , A. S. Voloshin
    • , A. S. Gorodnitskiy
    •  & M. L. Gorodetsky
  2. Moscow Institute of Physics and Technology, Dolgoprudny, Russia

    • N. G. Pavlov
    •  & A. S. Gorodnitskiy
  3. Samsung R&D Institute Russia, SAIT-Russia Laboratory, Moscow, Russia

    • S. Koptyaev
    • , M. V. Ryabko
    •  & S. V. Polonsky
  4. Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

    • G. V. Lihachev
    •  & M. L. Gorodetsky


  1. Search for N. G. Pavlov in:

  2. Search for S. Koptyaev in:

  3. Search for G. V. Lihachev in:

  4. Search for A. S. Voloshin in:

  5. Search for A. S. Gorodnitskiy in:

  6. Search for M. V. Ryabko in:

  7. Search for S. V. Polonsky in:

  8. Search for M. L. Gorodetsky in:


N.G.P., S.K. and M.L.G conceived the experiments. N.G.P., A.S.V., S.K., G.V.L. and M.L.G. analysed the results. N.G.P., A.S.V., S.K. and A.S.G. performed measurements with diode lasers and G.V.L. performed measurements with fibre lasers. G.V.L., N.G.P. and A.S.V. fabricated devices. S.V.P. and M.R. set the research direction relevant for industrial needs—comb source for wearable spectrometer (Samsung Gear). S.V.P. supervised the project from Samsung. M.L.G. supervised the project. All authors participated in writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to M. L. Gorodetsky.

Supplementary information

  1. Supplementary Information

    This file contains Supplementary Figures and additional information about the work.

About this article

Publication history