Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds

Abstract

Diabetic foot ulcers often become infected, leading to treatment complications and increased risk of loss of limb. Therapeutics to manage infection and simultaneously promote healing are needed. Here we report on the development of a Janus liposozyme that treats infections and promotes wound closure and re-epithelialization. The Janus liposozyme consists of liposome-like selenoenzymes for reactive oxygen species (ROS) scavenging to restore tissue redox and immune homeostasis. The liposozymes are used to encapsulate photosensitizers for photodynamic therapy of infections. We demonstrate application in methicillin-resistant Staphylococcus aureus-infected diabetic wounds showing high ROS levels for antibacterial function from the photosensitizer and nanozyme ROS scavenging from the liposozyme to restore redox and immune homeostasis. We demonstrate that the liposozyme can directly regulate macrophage polarization and induce a pro-regenerative response. By employing single-cell RNA sequencing, T cell-deficient Rag1−/− mice and skin-infiltrated immune cell analysis, we further reveal that IL-17-producing γδ T cells are critical for mediating M1/M2 macrophage transition. Manipulating the local immune homeostasis using the liposozyme is shown to be effective for skin wound repair and tissue regeneration in mice and mini pigs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of TSeL.
Fig. 2: Evaluation of antibacterial activities and cell protection effects of TSeL in vitro.
Fig. 3: In vivo wound healing efficacy and wound immune homeostasis analysis on STZ-induced diabetic mice infected by MRSA.
Fig. 4: SeL could induce anti-inflammatory macrophage polarization directly or through the γδ T-mediated way.
Fig. 5: The single-cell landscape in the db/db mouse model.
Fig. 6: In vivo wound healing efficacy on diabetic Bama mini pigs infected by S. aureus.

Similar content being viewed by others

Data availability

All generated or analysed data supporting the findings of this study are available within the paper and its Supplementary Information. The RNA-seq data are available from the Gene Expression Omnibus (GEO) database, with accession number GSE238152. The single-cell RNA-seq data are available from the GEO database, with accession number GSE253098. All raw data from this study are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Rice, J. B. et al. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care 37, 651–658 (2014).

    Article  PubMed  Google Scholar 

  2. Theocharidis, G. et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 13, 181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McDermott, K., Fang, M., Boulton, A. J. M., Selvin, E. & Hicks, C. W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 46, 209–221 (2023).

    Article  PubMed  Google Scholar 

  4. Zhang, P. et al. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis (dagger). Ann. Med. 49, 106–116 (2017).

    Article  PubMed  Google Scholar 

  5. Falanga, V. et al. Chronic wounds. Nat. Rev. Dis. Prim. 8, 50 (2022).

    Article  PubMed  Google Scholar 

  6. Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 366, 1736–1743 (2005).

    Article  PubMed  Google Scholar 

  7. Naghibi, M. et al. The effect of diabetes mellitus on chemotactic and bactericidal activity of human polymorphonuclear leukocytes. Diabetes Res. Clin. Pract. 4, 27–35 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Zykova, S. N. et al. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes 49, 1451–1458 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Thurlow, L. R., Stephens, A. C., Hurley, K. E. & Richardson, A. R. Lack of nutritional immunity in diabetic skin infections promotes Staphylococcus aureus virulence. Sci. Adv. 6, eabc5569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lavery, L. A. et al. Risk factors for foot infections in individuals with diabetes. Diabetes Care 29, 1288–1293 (2006).

    Article  PubMed  Google Scholar 

  11. Armstrong, D. G. et al. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot Ankle Res. 13, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Geiss, L. S. et al. Resurgence of diabetes-related nontraumatic lower-extremity amputation in the young and middle-aged adult U.S. population. Diabetes Care 42, 50–54 (2019).

    Article  PubMed  Google Scholar 

  13. Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G. & Apelqvist, J. The global burden of diabetic foot disease. Lancet 366, 1719–1724 (2005).

    Article  PubMed  Google Scholar 

  14. Jeffcoate, W. J., Vileikyte, L., Boyko, E. J., Armstrong, D. G. & Boulton, A. J. M. Current challenges and opportunities in the prevention and management of diabetic foot ulcers. Diabetes Care 41, 645–652 (2018).

    Article  PubMed  Google Scholar 

  15. Bowling, F. L., Rashid, S. T. & Boulton, A. J. Preventing and treating foot complications associated with diabetes mellitus. Nat. Rev. Endocrinol. 11, 606–616 (2015).

    Article  PubMed  Google Scholar 

  16. Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F. & Nogueira-Machado, J. A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell. Death. Dis. 9, 119 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr266 (2014).

    Article  Google Scholar 

  18. Zhang, Y. et al. Scarless wound healing programmed by core–shell microneedles. Nat. Commun. 14, 3431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Willenborg, S. et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell. Metab. 33, 2398–2414 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Veves, A., Falanga, V., Armstrong, D. G., Sabolinski, M. L. & Apligraf Diabetic Foot Ulcer Study. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24, 290–295 (2001).

  22. Marston, W. A., Hanft, J., Norwood, P., Pollak, R. & Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26, 1701–1705 (2003).

    Article  PubMed  Google Scholar 

  23. Theocharidis, G. et al. A strain-programmed patch for the healing of diabetic wounds. Nat. Biomed. Eng. 6, 1118–1133 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Cruciani, M., Lipsky, B. A., Mengoli, C. & de Lalla, F. Are granulocyte colony-stimulating factors beneficial in treating diabetic foot infections?: A meta-analysis. Diabetes Care 28, 454–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ziyadeh, N., Fife, D., Walker, A. M., Wilkinson, G. S. & Seeger, J. D. A matched cohort study of the risk of cancer in users of becaplermin. Adv. Skin. Wound Care. 24, 31–39 (2011).

    Article  PubMed  Google Scholar 

  26. Zhu, Y. et al. Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc. Natl Acad. Sci. USA 115, 6816–6821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren, J., Yang, M., Xu, F., Chen, J. & Ma, S. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats. Life Sci. 233, 116728 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, H. et al. Symbiotic algae–bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Lett. 22, 229–237 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, X. D. et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv. Funct. Mater. 31, 2009442 (2021).

    Article  CAS  Google Scholar 

  30. Lipsky, B. A. et al. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 39, 885–910 (2004).

    Article  PubMed  Google Scholar 

  31. Kalelkar, P. P., Riddick, M. & Garcia, A. J. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. Nat. Rev. Mater. 7, 39–54 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Game, F. Management of osteomyelitis of the foot in diabetes mellitus. Nat. Rev. Endocrinol. 6, 43–47 (2010).

    Article  PubMed  Google Scholar 

  33. Xiu, W. et al. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat. Commun. 13, 3875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, X. et al. Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11, 5737–5745 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Gao, S. et al. Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Proc. Natl Acad. Sci. USA 116, 23437–23443 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rotruck, J. T. et al. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590 (1973).

    Article  CAS  PubMed  Google Scholar 

  37. Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Makabenta, J. M. V. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Garcia Soriano, F. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7, 108–113 (2001).

    Article  CAS  Google Scholar 

  40. Xu, H. et al. Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 13, 642–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, W. et al. Skin γδ T cells and their function in wound healing. Front. Immunol. 13, 875076 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heath, W. R. & Carbone, F. R. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat. Immunol. 14, 978–985 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Seraphim, P. M. et al. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing. Life Sci. 254, 117813 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).

    Article  PubMed  Google Scholar 

  46. Maschalidi, S. et al. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606, 776–784 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, S. et al. Reversing SKI–SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551, 105–109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ye, Z. et al. Characterization of TGF-beta signaling in a human organotypic skin model reveals that loss of TGF-betaRII induces invasive tissue growth. Sci. Signal. 15, eabo2206 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Schatteman, G. C., Hanlon, H. D., Jiao, C., Dodds, S. G. & Christy, B. A. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J. Clin. Invest. 106, 571–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Furman, B. L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 70, 5.47.1–5.47.20 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China project (81921004, D.K.; 82241218 and 31972896, S.Z.; 82372140, C.Z.), National Key Research and Development Program of China (2021YFA1201103, S.Z.) and Tianjin Natural Science Foundation (22JCZDJC00180, C.Z.; 22JCYBJC00460, D.L.) and we acknowledge the financial support from the Fundamental Research Funds for the Central Universities (63231049, D.L.; 63213080, C.Z.) and Fundamental Research Funds for Institute of Transplantation Medicine of Nankai University (NKTM2023003, S.Z.; NKTM2023004, C.Z.). We thank PETCC, the Global Pets’ Cell Resource Center, for kindly providing us with cell lines and medium for testing. We also thank the Flow Cytometry Core Facility, Microscopy Platform, Bioinformatics Platform and Mass Spectrometry Platform at the College of Life Sciences, Nankai University, for supporting our work.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and S.Z. designed the study. C.Z. conceived the idea and developed the materials and method for the Janus liposozyme. T.P. and X.M. synthesized seleno-phospholipid (Se-DOPE). Y.Z. and J.Q. designed and synthesized TDTM. T.W. and T.P. designed the in vitro and in vivo experiment. T.W., T.P., Y.G., X.M., J.Q. and Y.Z. characterized the Janus liposozyme in vitro. T.W., Y.G. and W.W. evaluated the antibacterial effect. T.W., X.M. and Y.G. designed and conducted the in vivo diabetic wound healing experiment and analysis in WT mice and Bama mini pigs. T.W., X.P., R.G., M.Z. and D.L. designed and conducted the in vivo diabetic wound healing experiment and analysis in genetic ablation of T cells in mice. X.P., R.G., F.K. and M.H. completed the flow cytometry experiment and analysis. T.W. and D.Z. performed histology assessment, immunofluorescence and RNA-seq analysis. X.P. and M.Z. conducted single-cell RNA-seq experiments. X.P., F.D., M.Z. and S.Z. contributed to single-cell RNA-seq analysis. T.W., X.P., M.Z., L.Z. and C.Z. prepared the figures. T.W., X.P., M.Z., D.K., S.Z. and C.Z. wrote the manuscript with inputs from all authors.

Corresponding authors

Correspondence to Song Zhang or Chunqiu Zhang.

Ethics declarations

Competing interests

C.Z., T.P., X.M., T.W. and S.Z. are the inventors of a patent application (application no. 2024102459627) that covers the synthesis and antioxidative function of seleno-phospholipids. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mingzhen Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 In vivo wound healing efficacy on db/db mice infected by MRSA.

a, Representative images of infected diabetic wounds of db/db mice in different treatment groups. Inside the green dashed line is the initial wound area. Scale bars, 2 mm. b, In vivo wound closure rates of db/db mice in different treatment groups. n = 5 biologically independent samples. c, Representative H&E staining images and quantitative analysis of length of regenerated epidermis in wounds of db/db mice in different treatment groups on day 15. Scale bars, 200 µm. n = 5 biologically independent samples. d, Representative Masson staining images in wounds of db/db mice in different treatment groups on day 15. Scale bars, 200 µm. e, Representative DHE staining images and quantitative analysis of DHE intensity in wounds of db/db mice in different treatment groups on day 15. Scale bars, 50 µm. n = 5 biologically independent samples. f, Representative α-SMA staining images and quantitative analysis of α-SMA+ vessel area in wounds of db/db mice in different treatment groups on day 15. Scale bars, 100 µm. n = 5 biologically independent samples. g, Representative CD31 staining images and quantitative analysis of capillary density in wounds of db/db mice in different treatment groups on day 15. Scale bars, 100 µm. n = 5 biologically independent samples. Control represents PBS buffer-treated group. All values are expressed as mean ± s. d. Statistical significance was determined using two-way ANOVA with Tukey’s multiple comparisons in b and two-tailed unpaired t test in c, e, f, g. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Source data

Extended Data Fig. 2 In vivo wound healing efficacy on severe diabetic mice infected by MRSA.

a, Representative images of infected diabetic wounds of severe diabetic mice in different treatment groups. Inside the green dashed line is the initial wound area. Scale bars, 2 mm. b, In vivo wound closure rates of severe diabetic mice in different treatment groups. n = 5 biologically independent samples. c, Representative DHE staining images and quantitative analysis of DHE intensity in wounds of severe diabetic mice in different treatment groups on day 15. Scale bars, 50 µm. n = 5 biologically independent samples. d, Representative H&E staining images and quantitative analysis of length of regenerated epidermis in wounds of severe diabetic mice in different treatment groups on day 15. Scale bars, 200 µm. n = 5 biologically independent samples. e, Representative α-SMA staining images and quantitative analysis of α-SMA+ vessel area in wounds of severe diabetic mice in different treatment groups. Scale bars, 100 µm. n = 5 biologically independent samples. f, Representative CD68 and CD206 staining images and quantitative analysis of the ratio of CD206+/CD68+ cells in wounds of severe diabetic mice in different treatment groups. Scale bars, 50 µm. n = 5 biologically independent samples. Control represents PBS buffer-treated group. All values are expressed as mean ± s. d. Statistical significance was determined using two-way ANOVA with Tukey’s multiple comparisons in b and two-tailed unpaired t test in c-f. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Tables 1–5.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Pan, T., Peng, X. et al. Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01660-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research