Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics

Abstract

The discovery of ultraconfined polaritons with extreme anisotropy in a number of van der Waals (vdW) materials has unlocked new prospects for nanophotonic and optoelectronic applications. However, the range of suitable materials for specific applications remains limited. Here we introduce tellurite molybdenum quaternary oxides—which possess non-centrosymmetric crystal structures and extraordinary nonlinear optical properties—as a highly promising vdW family of materials for tunable low-loss anisotropic polaritonics. By employing chemical flux growth and exfoliation techniques, we successfully fabricate high-quality vdW layers of various compounds, including MgTeMoO6, ZnTeMoO6, MnTeMoO6 and CdTeMoO6. We show that these quaternary vdW oxides possess two distinct types of in-plane anisotropic polaritons: slab-confined and edge-confined modes. By leveraging metal cation substitutions, we establish a systematic strategy to finely tune the in-plane polariton propagation, resulting in the selective emergence of circular, elliptical or hyperbolic polariton dispersion, accompanied by ultraslow group velocities (0.0003c) and long lifetimes (5 ps). Moreover, Reststrahlen bands of these quaternary oxides naturally overlap that of α-MoO3, providing opportunities for integration. As an example, we demonstrate that combining α-MoO3 (an in-plane hyperbolic material) with CdTeMoO6 (an in-plane isotropic material) in a heterostructure facilitates collimated, diffractionless polariton propagation. Quaternary oxides expand the family of anisotropic vdW polaritons considerably, and with it, the range of nanophotonics applications that can be envisioned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical properties of vdW quaternary oxides.
Fig. 2: Observation of in-plane anisotropic edge polaritons.
Fig. 3: Tailoring polariton responses by atomic substitution.
Fig. 4: Diffractionless nanolight canalization by the heterostructure without twist.

Similar content being viewed by others

Data availability

All data are available in the paper or the Supplementary Information.

References

  1. Halasyamani, P. S. & Poeppelmeier, K. R. Noncentrosymmetric oxides. Chem. Mater. 10, 2753–2769 (1998).

    Article  CAS  Google Scholar 

  2. Ok, K. M., Chi, E. O. & Halasyamani, P. S. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 35, 710–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, S. et al. ZnTeMoO6: a strong second-harmonic generation material originating from three types of asymmetric building units. RSC Adv. 3, 14000–14006 (2013).

    Article  ADS  CAS  Google Scholar 

  4. Ra, H.-S., Ok, K. M. & Halasyamani, P. S. Combining second-order Jahn–Teller distorted cations to create highly efficient SHG materials: synthesis, characterization, and NLO properties of BaTeM2O9 (M = Mo6+ or W6+). J. Am. Chem. Soc. 125, 7764–7765 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, J. et al. Top-seeded solution growth, morphology, and properties of a polar crystal Cs2TeMo3O12. Cryst. Growth Des. 11, 1863–1868 (2011).

    Article  CAS  Google Scholar 

  6. Gao, Z., Tao, X., Yin, X., Zhang, W. & Jiang, M. Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal. Appl. Phys. Lett. 93, 252906 (2008).

    Article  ADS  Google Scholar 

  7. Wu, Q. et al. Biaxial crystal β-BaTeMo2O9: theoretical analysis and the feasibility as high-efficiency acousto-optic Q-switch. Opt. Express 25, 24893–24900 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Forzatti, P., Trifiro, F. & Villa, P. CdTeMoO6, CoTeMoO6, MnTeMoO6, and ZnTeMoO6: a new class of selective catalysts for allylic oxidation of butene and propylene. J. Catal. 55, 52–57 (1978).

    Article  CAS  Google Scholar 

  9. Guo, X., Gao, Z. & Tao, X. Recent advances in tellurite molybdates/tungstates crystals. CrystEngComm 24, 7516–7529 (2022).

  10. Xie, C., Yuan, H., Liu, Y. & Wang, X. Two-nodal surface phonons in solid-state materials. Phys. Rev. B 105, 054307 (2022).

    Article  ADS  CAS  Google Scholar 

  11. Li, C. et al. Controlled growth of layered acentric CdTeMoO6 single crystals with linear and nonlinear optical properties. Cryst. Growth Des. 18, 3376–3384 (2018).

    Article  CAS  Google Scholar 

  12. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  PubMed  Google Scholar 

  14. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abedini Dereshgi, S. et al. Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes. Nat. Commun. 11, 5771 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y., Chen, X. & Xu, Y. Topological phononics: from fundamental models to real materials. Adv. Funct. Mater. 30, 1904784 (2020).

    Article  CAS  Google Scholar 

  19. Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article  ADS  PubMed  Google Scholar 

  20. Zhang, X. et al. Ultrafast anisotropic dynamics of hyperbolic nanolight pulse propagation. Sci. Adv. 9, eadi4407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Feres, F. H. et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat. Commun. 12, 1995 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Hu, C. et al. Source-configured symmetry-broken hyperbolic polaritons. eLight 3, 14 (2023).

    Article  Google Scholar 

  29. Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Chaudhary, K. et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Qin, T., Ma, W., Wang, T. & Li, P. Phonon polaritons in van der Waals polar heterostructures for broadband strong light–matter interactions. Nanoscale 15, 12000–12007 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228–235 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Dai, S. et al. Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride. Adv. Mater. 30, 1706358 (2018).

    Article  Google Scholar 

  37. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Álvarez-Pérez, G., Voronin, K. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    Article  ADS  Google Scholar 

  40. Yang, X., Yao, J., Rho, J., Yin, X. & Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photon. 6, 450–454 (2012).

    Article  ADS  CAS  Google Scholar 

  41. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    Article  ADS  CAS  Google Scholar 

  42. Jin, C. & Li, Z. Synthesis, crystal structure, optical property and theoretical studies of a noncentrosymmetric telluromolybdate CoTeMoO6. J. Alloy. Compd. 722, 381–386 (2017).

    Article  CAS  Google Scholar 

  43. Mączka, M. et al. Growth and characterization of nonlinear optical telluromolybdate CoTeMoO6 single crystals. J. Solid State Chem. 220, 142–148 (2014).

    Article  ADS  Google Scholar 

  44. Gupta, M., Rambadey, O. V. & Sagdeo, P. R. Probing the effect of R-cation radii on structural, vibrational, optical, and dielectric properties of rare earth (R = La, Pr, Nd) aluminates. Ceram. Int. 48, 23072–23080 (2022).

    Article  CAS  Google Scholar 

  45. Yao, Z. et al. Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy. Nat. Commun. 12, 2649 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    Article  ADS  Google Scholar 

  47. Zhao, Y. et al. Ultralow-loss phonon polaritons in the isotope-enriched α-MoO3. Nano Lett. 22, 10208–10215 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Zhao, S. et al. A combination of multiple chromophores enhances second-harmonic generation in a nonpolar noncentrosymmetric oxide: CdTeMoO6. J. Mater. Chem. C 1, 2906–2912 (2013).

    Article  CAS  Google Scholar 

  53. Passler, N. C. & Paarmann, A. Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures. J. Opt. Soc. Am. B 34, 2128–2139 (2017).

    Article  ADS  CAS  Google Scholar 

  54. Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der Waals semiconductor α-MoO3 from near-and far-field correlative studies. Adv. Mater. 32, 1908176 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Z. Dai for Raman measurements and the efforts of Q. Ou and G. Si in exploring the material fabrication. P.L. acknowledges support from the National Natural Science Foundation of China (grant number 62075070) and the National Key Research and Development Program of China (grant number 2021YFA1201500), the Hubei Provincial Natural Science Foundation of China (grant number 2022CFA053) and the Innovation Fund of WNLO. S.Z. acknowledges support from the National Natural Science Foundation of China (grant numbers 22122507, 22193042, 21833010). R.C. acknowledges support from the China Postdoctoral Science Foundation (2021M701298).

Author information

Authors and Affiliations

Authors

Contributions

P.L. and S.Z. conceived the study. T.S. fabricated the samples and performed the s-SNOM measurements with the help of W.M. R.C. and T.S. carried out the fitting of the permittivity of the materials. H.W. synthesized the materials with the help of S.Z. T.S., R.C. and W.M. performed the simulations. T.S. and R.C. carried out the far-field experiments. Q.Y. performed the calculation of the phonon band structures. P.L., S.Z., X.Z. and J.L. coordinated and supervised the work. T.S. and P.L. wrote the paper with input from all co-authors. All authors read and approved the final paper.

Corresponding authors

Correspondence to Sangen Zhao or Peining Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Koray Aydin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Chen, R., Ma, W. et al. Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01628-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing