Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional analysis of single enzymes combining programmable molecular circuits with droplet-based microfluidics

Abstract

The analysis of proteins at the single-molecule level reveals heterogeneous behaviours that are masked in ensemble-averaged techniques. The digital quantification of enzymes traditionally involves the observation and counting of single molecules partitioned into microcompartments via the conversion of a profluorescent substrate. This strategy, based on linear signal amplification, is limited to a few enzymes with sufficiently high turnover rate. Here we show that combining the sensitivity of an exponential molecular amplifier with the modularity of DNA–enzyme circuits and droplet readout makes it possible to specifically detect, at the single-molecule level, virtually any D(R)NA-related enzymatic activity. This strategy, denoted digital PUMA (Programmable Ultrasensitive Molecular Amplifier), is validated for more than a dozen different enzymes, including many with slow catalytic rate, and down to the extreme limit of apparent single turnover for Streptococcus pyogenes Cas9. Digital counting uniquely yields absolute molar quantification and reveals a large fraction of inactive catalysts in all tested commercial preparations. By monitoring the amplification reaction from single enzyme molecules in real time, we also extract the distribution of activity among the catalyst population, revealing alternative inactivation pathways under various stresses. Our approach dramatically expands the number of enzymes that can benefit from quantification and functional analysis at single-molecule resolution. We anticipate digital PUMA will serve as a versatile framework for accurate enzyme quantification in diagnosis or biotechnological applications. These digital assays may also be utilized to study the origin of protein functional heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proof of principle for the detection of NBI nickase activity.
Fig. 2: Generalization of the PUMA-assisted detection assay over a dozen enzymes.
Fig. 3: Specificity of the enzymatic assays.
Fig. 4: Digital detection of DNA-related enzymes.
Fig. 5: Activity distribution is assessed from time-lapse experiments.
Fig. 6: Study of functional heterogeneity of an enzyme population.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. All nucleic acid sequences and experimental conditions are available in Supplementary Tables 1 and 3. Unprocessed data related to Figs. 14 are provided in the source data file. Raw data (droplet coordinates and fluorescence for each time point) from Figs. 5 and 6 can be accessed at the following publicly accessible repository: https://doi.org/10.5281/zenodo.10455918, https://doi.org/10.5281/zenodo.10455829 and https://doi.org/10.5281/zenodo.10455612.

Code availability

The Mathematica code used for droplet analysis is available via GitHub at the following link: https://github.com/GuGi75/Droplet-analysis

References

  1. Greenough, L. et al. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes. Nucleic Acids Res. 44, e15 (2016).

    Article  PubMed  Google Scholar 

  2. Farag, N. et al. Folding-upon-repair DNA nanoswitches for monitoring the activity of DNA repair enzymes. Angew. Chem. 133, 7359–7365 (2021).

    Article  ADS  Google Scholar 

  3. Luo, X. & Hsing, I.-M. Immobilization-free electrochemical DNA polymerase assay. Electroanalysis 23, 923–926 (2011).

    Article  CAS  Google Scholar 

  4. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).

    Article  CAS  Google Scholar 

  7. Rotman, B. Measurement of activity of single molecules of β-d-galactosidase. Proc. Natl Acad. Sci. USA 47, 1981–1991 (1961).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat. Biotechnol. 23, 361–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Ono, T., Ichiki, T. & Noji, H. Digital enzyme assay using attoliter droplet array. Analyst 143, 4923–4929 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guan, Z. et al. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. Biomicrofluidics 8, 014110 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rojek, M. J. & Walt, D. R. Observing single enzyme molecules interconvert between activity states upon heating. PLoS One 9, e86224 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Rissin, D. M. & Walt, D. R. Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. Nano Lett. 6, 520–523 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Liebherr, R. B. et al. Three-in-one enzyme assay based on single molecule detection in femtoliter arrays. Anal. Bioanal. Chem. 407, 7443–7452 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Obayashi, Y., Iino, R. & Noji, H. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate. Analyst 140, 5065–5073 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Gorris, H. H., Rissin, D. M. & Walt, D. R. Stochastic inhibitor release and binding from single-enzyme molecules. Proc. Natl Acad. Sci. USA 104, 17680–17685 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. English, B. P. et al. Ever-fluctuating single enzyme molecules: Michaelis–Menten equation revisited. Nat. Chem. Biol. 2, 87–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Hsin, T.-M. & Yeung, E. S. Single-molecule reactions in liposomes. Angew. Chem. Int. Ed. 46, 8032–8035 (2007).

    Article  CAS  Google Scholar 

  19. Ueno, H., Kato, M., Minagawa, Y., Hirose, Y. & Noji, H. Elucidation and control of low and high active populations of alkaline phosphatase molecules for quantitative digital bioassay. Protein Sci. 30, 1628–1639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, Y., Li, X. & Walt, D. R. Single-molecule analysis determines isozymes of human alkaline phosphatase in serum. Angew. Chem. Int. Ed. 59, 18010–18015 (2020).

    Article  CAS  Google Scholar 

  21. Craig, D. B., Arriaga, E. A., Wong, J. C. Y., Lu, H. & Dovichi, N. J. Studies on Single alkaline phosphatase molecules: reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation—the death of an enzyme. J. Am. Chem. Soc. 118, 5245–5253 (1996).

    Article  CAS  Google Scholar 

  22. Sakuma, M. et al. Genetic perturbation alters functional substates in alkaline phosphatase. J. Am. Chem. Soc. 145, 2806–2814 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gorris, H. H. & Walt, D. R. Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J. Am. Chem. Soc. 131, 6277–6282 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Ehrl, B. N., Liebherr, R. B. & Gorris, H. H. Single molecule kinetics of horseradish peroxidase exposed in large arrays of femtoliter-sized fused silica chambers. Analyst 138, 4260–4265 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Comellas-Aragonès, M. et al. A virus-based single-enzyme nanoreactor. Nat. Nanotechnol. 2, 635–639 (2007).

    Article  ADS  PubMed  Google Scholar 

  26. Liebherr, R. B., Renner, M. & Gorris, H. H. A single molecule perspective on the functional diversity of in vitro evolved β-glucuronidase. J. Am. Chem. Soc. 136, 5949–5955 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, Y. et al. Single-molecule mechanistic study of enzyme hysteresis. ACS Cent. Sci. 5, 1691–1698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe, R., Sakuragi, T., Noji, H. & Nagata, S. Single-molecule analysis of phospholipid scrambling by TMEM16F. Biophys. J. 114, 558a (2018).

    Article  ADS  Google Scholar 

  29. Tan, W. & Yeung, E. S. Monitoring the reactions of single enzyme molecules and single metal ions. Anal. Chem. 69, 4242–4248 (1997).

    Article  CAS  Google Scholar 

  30. Sakakihara, S., Araki, S., Iino, R. & Noji, H. A single-molecule enzymatic assay in a directly accessible femtoliter droplet array. Lab Chip 10, 3355–3362 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe, R. et al. Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity. Nat. Commun. 5, 4519 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Ueno, H., Sano, M., Hara, M. & Noji, H. Digital cascade assays for ADP- or ATP-producing enzymes using a femtoliter reactor array device. ACS Sens. 8, 3400–3407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noji, H., Minagawa, Y. & Ueno, H. Enzyme-based digital bioassay technology—key strategies and future perspectives. Lab Chip 22, 3092–3109 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Cox, K. J., Subramanian, H. K. K., Samaniego, C. C., Franco, E. & Choudhary, A. A universal method for sensitive and cell-free detection of CRISPR-associated nucleases. Chem. Sci. 10, 2653–2662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montagne, K., Gines, G., Fujii, T. & Rondelez, Y. Boosting functionality of synthetic DNA circuits with tailored deactivation. Nat. Commun. 7, 13474 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gines, G. et al. Isothermal digital detection of microRNA using background-free molecular circuit. Sci. Adv. 6, eaay5952 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shenshin, V. A., Lescanne, C., Gines, G. & Rondelez, Y. A small-molecule chemical interface for molecular programs. Nucleic Acids Res. 49, 7765–7774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okumura, S. et al. Nonlinear decision-making with enzymatic neural networks. Nature 610, 496–501 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Li, Y. et al. Ultrasensitive isothermal detection of SARS-CoV-2 based on self-priming hairpin-utilized amplification of the G-rich sequence. Anal. Chem. 94, 17448–17455 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Raper, A. T., Stephenson, A. A. & Suo, Z. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 140, 2971–2984 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Phaneuf, C. R. et al. Ultrasensitive multi-species detection of CRISPR-Cas9 by a portable centrifugal microfluidic platform. Anal. Methods 11, 559–565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, X.-P. & Heyer, W.-D. in DNA Recombination: Methods and Protocols (ed. Tsubouchi, H.) 329–343 (Humana Press, 2011); https://doi.org/10.1007/978-1-61779-129-1_19

  45. Tanford, C. in Advances in Protein Chemistry vol. 23 (eds. Anfinsen, C. B. et al.) 121–282 (Academic Press, 1968).

  46. Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, G., Lin, Q., Jin, S. & Gao, C. The CRISPR-Cas toolbox and gene editing technologies. Mol. Cell 82, 333–347 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Phan, Q. A., Truong, L. B., Medina-Cruz, D., Dincer, C. & Mostafavi, E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens. Bioelectron. 197, 113732 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Abate, A. R., Hung, T., Mary, P., Agresti, J. J. & Weitz, D. A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl Acad. Sci. USA 107, 19163–19166 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mazutis, L. & Griffiths, A. D. Selective droplet coalescence using microfluidic systems. Lab Chip 12, 1800–1806 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Mattox, A. K. et al. Applications of liquid biopsies for cancer. Sci. Transl. Med. 11, eaay1984 (2019).

    Article  PubMed  Google Scholar 

  52. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Abbotts, R. & Madhusudan, S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat. Rev. 36, 425–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Collins, A. R. & Gaivão, I. DNA base excision repair as a biomarker in molecular epidemiology studies. Mol. Asp. Med. 28, 307–322 (2007).

    Article  CAS  Google Scholar 

  55. Zaher, D. M. et al. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch. Pharm. 353, e2000011 (2020).

    Article  CAS  Google Scholar 

  56. Sachsenhauser, V. & Bardwell, J. C. Directed evolution to improve protein folding in vivo. Curr. Opin. Struct. Biol. 48, 117–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Dramé-Maigné, A. et al. In vitro enzyme self-selection using molecular programs. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.3c00385 (2024).

  58. Xue, Q. & Yeung, E. S. Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Craig, D. B. et al. Differences in the average single molecule activities of E. coli β-galactosidase: effect of source, enzyme molecule age and temperature of induction. J. Protein Chem. 22, 555–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Tawfik, D. S. Messy biology and the origins of evolutionary innovations. Nat. Chem. Biol. 6, 692–696 (2010).

    Article  PubMed  Google Scholar 

  61. Willensdorfer, M., Bürger, R. & Nowak, M. A. Phenotypic mutation rates and the abundance of abnormal proteins in yeast. PLoS Comput. Biol. 3, e203 (2007).

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  62. Yamagata, A., Masui, R., Kakuta, Y., Kuramitsu, S. & Fukuyama, K. Overexpression, purification and characterization of RecJ protein from Thermus thermophilus HB8 and its core domain. Nucleic Acids Res. 29, 4617–4624 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Menezes, R., Dramé-Maigné, A., Taly, V., Rondelez, Y. & Gines, G. Streamlined digital bioassays with a 3D printed sample changer. Analyst 145, 572–581 (2019).

    Article  ADS  PubMed  Google Scholar 

  64. Lobato-Dauzier, N. et al. Silicon chambers for enhanced incubation and imaging of microfluidic droplets. Lab Chip 23, 2854–2865 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Pekin, D. et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11, 2156–2166 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the R&D department of New England Biolabs for providing us with the enzyme concentrations. We thank N. Lobato-Dauzier, A. Genot and the platform FEMTO-ST (CNRS, Besançon) for providing the silicon-made incubation chambers. This work was supported by the European Research Council under the framework program H2020 for research and innovation (grant projects MoP-MiP, number 949493 and ProFF, number 647275) and ANR grant number 243063 MoBiDYC.

Author information

Authors and Affiliations

Authors

Contributions

G.G. and Y.R. conceived the study and contributed to the design of experiments. G.G., R.E. A.D.-M. and N.L. performed the experiments. A.B. designed the spy.Cas9 assay and produced the sgRNA. G.G., Y.R. and R.E. contributed to data analysis and interpretation. G.G. drafted the paper and all authors provided feedback.

Corresponding author

Correspondence to Guillaume Gines.

Ethics declarations

Competing interests

G.G. and Y.R. are listed as inventors on a patent assigned to the CNRS, INSERM, ESPCI Paris, Université de recherche PSL and Université Paris Cité. All other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Hans-Heiner Gorris, Fabrice Gielen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Notes 1–3, Figs. 1–33 and Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed amplification time traces.

Source Data Fig. 2

Unprocessed amplification time traces.

Source Data Fig. 3

Unprocessed amplification time traces.

Source Data Fig. 4

Droplets analysis source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gines, G., Espada, R., Dramé-Maigné, A. et al. Functional analysis of single enzymes combining programmable molecular circuits with droplet-based microfluidics. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01617-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing