Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion

Abstract

Fluorescence resonance energy transfer (FRET) reporters are commonly used in the final stages of nucleic acid amplification tests to indicate the presence of nucleic acid targets, where fluorescence is restored by nucleases that cleave the FRET reporters. However, the need for dual labelling and purification during manufacturing contributes to the high cost of FRET reporters. Here we demonstrate a low-cost silver nanocluster reporter that does not rely on FRET as the on/off switching mechanism, but rather on a cluster transformation process that leads to fluorescence color change upon nuclease digestion. Notably, a 90 nm red shift in emission is observed upon reporter cleavage, a result unattainable by a simple donor-quencher FRET reporter. Electrospray ionization–mass spectrometry results suggest that the stoichiometric change of the silver nanoclusters from Ag13 (in the intact DNA host) to Ag10 (in the fragments) is probably responsible for the emission colour change observed after reporter digestion. Our results demonstrate that DNA-templated silver nanocluster probes can be versatile reporters for detecting nuclease activities and provide insights into the interactions between nucleases and metallo-DNA nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic of Subak reporters and their fragmentation-induced colour-switching property.
Fig. 2: Quantification of DNase I using Subak-1.
Fig. 3: ESI–MS results of the gel-purified Subak-1 reporters before and after DNase I digestion.
Fig. 4: Subak optimization via single- and double-mutation tests.
Fig. 5: Working principles of Subak-1 and Subak-2.
Fig. 6: Subak-2 reporting synthetic SARS-CoV-2 cDNA in amplification-free DETECTR assay.

Similar content being viewed by others

Data availability

Source data are provided with this paper and available online at https://doi.org/10.5281/zenodo.10394146.

Code availability

The code designed for data collection and analysis of this study is available online at https://doi.org/10.5281/zenodo.10394146.

References

  1. Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63–e63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Piepenburg, O., Williams, C. H., Stemple, D. L. & Armes, N. A. DNA detection using recombination proteins. PLoS Biol. 4, e204 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR–Cas13a and mobile phone microscopy. Cell 184, 323–333 (2021).

  4. Chen, J. S. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marras, S. A., Kramer, F. R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122–e122 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yeh, H.-C., Sharma, J., Han, J. J., Martinez, J. S. & Werner, J. H. A. DNA–silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 10, 3106–3110 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. O’Neill, P. R., Gwinn, E. G. & Fygenson, D. K. UV excitation of DNA stabilized Ag cluster fluorescence via the DNA bases. J. Phys. Chem. C 115, 24061–24066 (2011).

    Article  Google Scholar 

  11. Petty, J. T., Zheng, J., Hud, N. V. & Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 126, 5207–5212 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Yeh, H.-C. et al. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 134, 11550–11558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blevins, M. S. et al. Footprints of nanoscale DNA–silver cluster chromophores via activated-electron photodetachment mass spectrometry. ACS Nano 13, 14070–14079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Copp, S. M. et al. Magic numbers in DNA-stabilized fluorescent silver clusters lead to magic colors. J. Phys. Chem. Lett. 5, 959–963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He, C., Goodwin, P. M., Yunus, A. I., Dickson, R. M. & Petty, J. T. A split DNA scaffold for a green fluorescent silver cluster. J. Phys. Chem. C 123, 17588–17597 (2019).

    Article  CAS  Google Scholar 

  16. Schultz, D. et al. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 25, 2797–2803 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Petty, J. T. et al. Optical sensing by transforming chromophoric silver clusters in DNA nanoreactors. Anal. Chem. 84, 356–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, J. et al. CRISPR/Cas precisely regulated DNA-templated silver nanocluster fluorescence sensor for meat adulteration detection. J. Agric. Food Chem. 70, 14296–14303 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, C. Y., Park, K. S., Jung, Y. K. & Park, H. G. A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite. Biosens. Bioelectron. 93, 293–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Kuo, Y. A. et al. Massively parallel selection of nanocluster beacons. Adv. Mater. 34, e2204957 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y.-A. et al. Nanocluster beacons enable detection of a single N6-methyladenine. J. Am. Chem. Soc. 137, 10476–10479 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Obliosca, J. M. et al. A complementary palette of nanocluster beacons. ACS Nano 8, 10150–10160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cerretani, C., Kanazawa, H., Vosch, T. & Kondo, J. Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster. Angew. Chem. Int. Ed. 58, 17153–17157 (2019).

    Article  CAS  Google Scholar 

  24. Petty, J. T. et al. A DNA-encapsulated silver cluster and the roles of its nucleobase ligands. J. Phys. Chem. C 122, 28382–28392 (2018).

    Article  CAS  Google Scholar 

  25. Koszinowski, K. & Ballweg, K. A highly charged Ag64+ core in a DNA‐encapsulated silver nanocluster. Chem. Eur. J. 16, 3285–3290 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Rosell, A. et al. Chloride ligands on DNA-stabilized silver nanoclusters. J. Am. Chem. Soc. 145, 10721–10729 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huard, D. J. et al. Atomic structure of a fluorescent Ag8 cluster templated by a multistranded DNA scaffold. J. Am. Chem. Soc. 141, 11465–11470 (2018).

    Article  Google Scholar 

  28. Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Cong, X. et al. Determining membrane protein–lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. McCabe, J. W. et al. Variable-temperature electrospray ionization for temperature-dependent folding/refolding reactions of proteins and ligand binding. Anal. Chem. 93, 6924–6931 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramachandran, A. & Santiago, J. G. CRISPR enzyme kinetics for molecular diagnostics. Anal. Chem. 93, 7456–7464 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen, L. T., Smith, B. M. & Jain, P. K. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nat. Commun. 11, 4906 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nalefski, E. A. et al. Kinetic analysis of Cas12a and Cas13a RNA-guided nucleases for development of improved CRISPR-based diagnostics. iScience 24, 102996 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeh, H.-C., Sharma, J., Han, J. J., Martinez, J. S. & Werner, J. H. A beacon of light. IEEE Nanotechnol. Mag. 5, 28–33 (2011).

    Article  Google Scholar 

  35. Juul, S. et al. Nanocluster beacons as reporter probes in rolling circle enhanced enzyme activity detection. Nanoscale 7, 8332–8337 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ge, L., Sun, X., Hong, Q. & Li, F. Ratiometric nanocluster beacon: a label-free and sensitive fluorescent DNA detection platform. ACS Appl. Mater. Interfaces 9, 13102–13110 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Suo, T. et al. A versatile turn-on fluorometric biosensing profile based on split aptamers-involved assembly of nanocluster beacon sandwich. Sens. Actuators B 324, 128586 (2020).

    Article  CAS  Google Scholar 

  38. Gwinn, E., Schultz, D., Copp, S. M. & Swasey, S. DNA-protected silver clusters for nanophotonics. Nanomaterials 5, 180–207 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zou, X., Kang, X. & Zhu, M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem. Soc. Rev. 52, 5892–5967 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Leytus, S. P., Melhado, L. L. & Mangel, W. F. Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209, 299–307 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Broto, M. et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat. Nanotechnol. 17, 1120–1126 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Hu, Q. et al. DNAzyme-based faithful probing and pulldown to identify candidate biomarkers of low abundance. Nat. Chem. 16, 122–131 (2023).

    Article  PubMed  Google Scholar 

  43. Fort, K. L. et al. Implementation of ultraviolet photodissociation on a benchtop Q exactive mass spectrometer and its application to phosphoproteomics. Anal. Chem. 88, 2303–2310 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Sanders, J. D. et al. Enhanced ion mobility separation and characterization of isomeric phosphatidylcholines using absorption mode Fourier transform multiplexing and ultraviolet photodissociation mass spectrometry. Anal. Chem. 94, 4252–4259 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation grants (CBET2029266 to H.-C.Y. and J.S.B., and CBET2041340 to M.J.K.) and the National Institutes of Health grant (EY033106 to H.-C.Y.). The authors thank I. C. Santos for improving the ESI–MS analysis workflow on DNA/AgNCs, S. Kim for her assistance in the RNase A experiment and A. Yeh for his assistance in the revision.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and H.-C.Y. conceived the project and designed the experiments. S.H. designed the DNA sequences for Subak reporters and mutation tests to optimize the reporters. S.H. developed a gel-purification method to purify DNA/AgNCs. S.H. performed DNase I, Cas12a and RNase A experiments. A.T.L. and J.M. performed fluorescence measurements and developed a Python code for excitation–emission matrices analysis. S.H. and J.N.W. prepared the samples for MS measurements. J.N.W. performed MS measurements and data analysis with assistance from S.W.J.S. and J.S.B. J.S.B. supervised all MS experiments and data analysis. T.D.N., Y.-A.K. and Y.-I.C. collected the absorption data. Y.H. and A.-T.N. checked the buffer compatibility for DNase I digestion and in vitro CRISPR–Cas reaction. M.L.G. and M.J.K. optimized the AgNC synthesis. S.H. and H.-C.Y. wrote the article with input from all authors. H.-C.Y. supervised the project.

Corresponding author

Correspondence to Hsin-Chih Yeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Equations 1 and 2, Figs. 1–29, Videos 1–4 and Source Data 1–5.

Reporting Summary

Supplementary Video 1

Fluorescence changes of gel-purified Subak-1 under UV excitation during DNase I digestion.

Supplementary Video 2

Fluorescence changes of gel-purified Subak-2 (II in Fig. 5) under UV excitation during DNase I digestion.

Supplementary Video 3

Visible colour changes of gel-purified Subak-1 during DNase I digestion.

Supplementary Video 4

Visible colour changes of gel-purified Subak-2 (II in Fig. 5) during DNase I digestion.

Source data

Source Data Fig. 2

Unprocessed gel.

Source Data Fig. 3

Unprocessed gel.

Source Data Fig. 5

Unprocessed gel.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Walker, J.N., Luong, A.T. et al. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01612-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing