Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering colloidal semiconductor nanocrystals for quantum information processing

Abstract

Quantum information processing—which relies on spin defects or single-photon emission—has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical interfaces to long-lived spin states.
Fig. 2: Prospects for multicomponent quantum sensing systems.
Fig. 3: Multifunctional colloidal quantum circuits.

Similar content being viewed by others

References

  1. Chen, W. et al. Scalable and programmable phononic network with trapped ions. Nat. Phys. 19, 877–883 (2023).

    Article  CAS  Google Scholar 

  2. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Kannan, B. et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics. Nat. Phys. 19, 394–400 (2023).

    Article  CAS  Google Scholar 

  4. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  5. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  ADS  Google Scholar 

  6. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Hausmann, B. J. M. Nanophotonics in Diamond (Harvard Univ., 2013).

  8. Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Darquié, B. et al. Controlled single-photon emission from a single trapped two-level atom. Science 309, 454–456 (2005).

    Article  PubMed  ADS  Google Scholar 

  10. Stute, A. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–485 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Gupta, S., Wu, W., Huang, S. & Yakobson, B. I. Single-photon emission from two-dimensional materials, to a brighter future. J. Phys. Chem. Lett. 14, 3274–3284 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Gaither-Ganim, M. B., Newlon, S. A., Anderson, M. G. & Lee, B. Organic molecule single-photon sources. Oxf. Open Mater. Sci. 3, itac017 (2023).

    Article  Google Scholar 

  14. Kask, P., Piksarv, P. & Mets, Ü. Fluorescence correlation spectroscopy in the nanosecond time range: photon antibunching in dye fluorescence. Eur. Biophys. J. 12, 163–166 (1985).

    Article  CAS  Google Scholar 

  15. Arakawa, Y. & Holmes, M. J. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview. Appl. Phys. Rev. 7, 021309 (2020).

    Article  CAS  ADS  Google Scholar 

  16. Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    Article  PubMed  ADS  Google Scholar 

  17. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  ADS  Google Scholar 

  18. Große, J., von Helversen, M., Koulas-Simos, A., Hermann, M. & Reitzenstein, S. Development of site-controlled quantum dot arrays acting as scalable sources of indistinguishable photons. APL Photon. 5, 096107 (2020).

    Article  ADS  Google Scholar 

  19. Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Schnauber, P. et al. Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. Nano Lett. 19, 7164–7172 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article  CAS  ADS  Google Scholar 

  22. Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Preprint at https://arxiv.org/abs/2306.06460 (2023).

  23. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article  CAS  ADS  Google Scholar 

  24. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2020).

    Article  PubMed  Google Scholar 

  27. Saboktakin, M. et al. Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. ACS Nano 7, 7186–7192 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Kang, C. & Honciuc, A. Self-assembly of Janus nanoparticles into transformable suprastructures. J. Phys. Chem. Lett. 9, 1415–1421 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Hao, Q., Lv, H., Ma, H., Tang, X. & Chen, M. Development of self-assembly methods on quantum dots. Materials 16, 1317 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent device. Adv. Mater. 35, 2206613 (2023).

    Article  CAS  Google Scholar 

  32. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1014 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Chandrasekaran, V. et al. Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104–6109 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Hu, F. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, C. et al. Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22, 3751–3760 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Kaplan, A. E. K. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023).

    Article  CAS  ADS  Google Scholar 

  42. Proppe, A. H. et al. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 18, 993–999 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Hanson, R. et al. Zeeman energy and spin relaxation in a one-electron quantum dot. Phys. Rev. Lett. 91, 196802 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article  CAS  ADS  Google Scholar 

  46. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).

    Article  CAS  ADS  Google Scholar 

  48. Zhang, X. et al. Semiconductor quantum computation. Natl Sci. Rev. 6, 32–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Piot, N. et al. A single hole spin with enhanced coherence in natural silicon. Nat. Nanotechnol. 17, 1072–1077 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Beaulac, R., Archer, P. I., Ochsenbein, S. T. & Gamelin, D. R. Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics. Adv. Funct. Mater. 18, 3873–3891 (2008).

    Article  CAS  Google Scholar 

  51. Archer, P. I., Santangelo, S. A. & Gamelin, D. R. Direct observation of spd exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots. Nano Lett. 7, 1037–1043 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Barrows, C. J., Fainblat, R. & Gamelin, D. R. Excitonic Zeeman splittings in colloidal CdSe quantum dots doped with single magnetic impurities. J. Mater. Chem. 5, 5232–5238 (2017).

    CAS  Google Scholar 

  53. Neumann, T. et al. Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites. Nat. Commun. 12, 3489 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Lohmann, S.-H., Cai, T., Morrow, D. J., Chen, O. & Ma, X. Brightening of dark states in CsPbBr3 quantum dots caused by light-induced magnetism. Small 17, 2101527 (2021).

    Article  CAS  Google Scholar 

  55. Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 618, 951–958 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Tran, N. M., Palluel, M., Daro, N., Chastanet, G. & Freysz, E. Time-resolved study of the photoswitching of gold nanorods coated with a spin-crossover compound shell. J. Phys. Chem. C 125, 22611–22621 (2021).

    Article  CAS  Google Scholar 

  57. Zhang, L. et al. Reversible switching of strong light–matter coupling using spin-crossover molecular materials. J. Phys. Chem. Lett. 14, 6840–6849 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Fernandez-Gonzalvo, X., Chen, Y.-H., Yin, C., Rogge, S. & Longdell, J. J. Coherent frequency up-conversion of microwaves to the optical telecommunications band in an Er:YSO crystal. Phys. Rev. A 92, 062313 (2015).

    Article  ADS  Google Scholar 

  59. Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Ulanowski, A., Merkel, B. & Reiserer, A. Spectral multiplexing of telecom emitters with stable transition frequency. Sci. Adv. 8, abo4538 (2022).

    Article  Google Scholar 

  62. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Lin, X., Han, Y., Zhu, J. & Wu, K. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 18, 124–130 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Viitaniemi, M. L. K. et al. Coherent spin preparation of indium donor qubits in single ZnO nanowires. Nano Lett. 22, 2134–2139 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  67. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–832 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).

    Google Scholar 

  69. Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Ishii, A. & Miyasaka, T. Upconverting near-infrared light detection in lead halide perovskite with core–shell lanthanide nanoparticles. Adv. Photon. Res. 4, 2200222 (2023).

    Article  CAS  Google Scholar 

  71. Gong, J., Steinsultz, N. & Ouyang, M. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots. Nat. Commun. 7, 11820 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Vamivakas, A. N. et al. Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  73. Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    Article  CAS  ADS  Google Scholar 

  74. Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157–169 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mok, W.-K., Bharti, K., Kwek, L.-C. & Bayat, A. Optimal probes for global quantum thermometry. Commun. Phys. 4, 62 (2021).

    Article  Google Scholar 

  76. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Toyli, D. M., de las Casas, C. F., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Segawa, T. F. & Igarashi, R. Nanoscale quantum sensing with nitrogen-vacancy centers in nanodiamonds—a magnetic resonance perspective. Prog. Nucl. Magn. Reson. Spectrosc. 134–135, 20–38 (2023).

    Article  PubMed  Google Scholar 

  79. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  80. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  81. Vafaeezadeh, M. & Thiel, W. R. Task-specific Janus materials in heterogeneous catalysis. Angew. Chem. Int. Ed. 61, e202206403 (2022).

    Article  CAS  ADS  Google Scholar 

  82. Zehavi, M., Sofer, D., Miloh, T., Velev, O. D. & Yossifon, G. Optically modulated propulsion of electric-field-powered photoconducting Janus particles. Phys. Rev. Appl. 18, 024060 (2022).

    Article  CAS  ADS  Google Scholar 

  83. Dong, R., Zhang, Q., Gao, W., Pei, A. & Ren, B. Highly efficient light-driven TiO2–Au Janus micromotors. ACS Nano 10, 839–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Jang, B. et al. Multiwavelength light-responsive Au/B–TiO2 Janus micromotors. ACS Nano 11, 6146–6154 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Xuan, M. et al. Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kink, F., Collado, M. P., Wiedbrauk, S., Mayer, P. & Dube, H. Bistable photoswitching of hemithioindigo with green and red light: entry point to advanced molecular digital information processing. Chem. Eur. J. 23, 6237–6243 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Erbas-Cakmak, S. et al. Molecular logic gates: the past, present and future. Chem. Soc. Rev. 47, 2228–2248 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Ding, H. & Ma, Y. Interactions between Janus particles and membranes. Nanoscale 4, 1116–1122 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Huhnstock, R. et al. Translatory and rotatory motion of exchange-bias capped Janus particles controlled by dynamic magnetic field landscapes. Sci. Rep. 11, 21794 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Claussen, J. C., Franklin, A. D., Ul Haque, A., Porterfield, D. M. & Fisher, T. S. Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3, 37–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Xia, Y. et al. Entanglement-enhanced optomechanical sensing. Nat. Photon. 17, 470–477 (2023).

    Article  CAS  ADS  Google Scholar 

  92. Zhou, H. et al. Quantum metrology with strongly interacting spin systems. Phys. Rev. X 10, 031003 (2020).

    CAS  Google Scholar 

  93. Greenberger, D. M., Horne, M. A. & Zeilinger, A. Going beyond Bell’s theorem. Preprint at https://arxiv.org/abs/0712.0921 (2007).

  94. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  CAS  Google Scholar 

  95. Cai, R. et al. Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals. Nat. Commun. 14, 2472 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Udvarhelyi, P. et al. Spectrally stable defect qubits with no inversion symmetry for robust spin-to-photon interface. Phys. Rev. Appl. 11, 044022 (2019).

    Article  CAS  ADS  Google Scholar 

  97. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

    Article  Google Scholar 

  98. Xu, Q. et al. Heterogeneous integration of colloidal quantum dot inks on silicon enables highly efficient and stable infrared photodetectors. ACS Photon. 9, 2792–2801 (2022).

    Article  CAS  Google Scholar 

  99. Yun, H. J. et al. Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots. Nat. Commun. 11, 5280 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2022).

    Article  CAS  ADS  Google Scholar 

  101. Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  102. Kuwahata, A. et al. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications. Sci. Rep. 10, 2483 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Bromberg, Y., Lahini, Y., Small, E. & Silberberg, Y. Hanbury Brown and Twiss interferometry with interacting photons. Nat. Photon. 4, 721–726 (2010).

    Article  CAS  ADS  Google Scholar 

  104. Lin, X. et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  105. Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  106. Buckley, S., Rivoire, K. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012).

    Article  PubMed  ADS  Google Scholar 

  107. Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).

    Article  ADS  Google Scholar 

  108. Varoutsis, S. et al. Restoration of photon indistinguishability in the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005).

    Article  ADS  Google Scholar 

  109. Bockelmann, U., Heller, W. & Abstreiter, G. Microphotoluminescence studies of single quantum dots. II. Magnetic-field experiments. Phys. Rev. B 55, 4469–4472 (1997).

    Article  CAS  ADS  Google Scholar 

  110. Saxena, A. et al. Improving indistinguishability of single photons from colloidal quantum dots using nanocavities. ACS Photon. 6, 3166–3173 (2019).

    Article  CAS  Google Scholar 

  111. Gaponenko, S. V. Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, 1998); https://doi.org/10.1017/CBO9780511524141

  112. Klimov, V. I. Nanocrystal Quantum Dots (CRC Press, 2017); https://doi.org/10.1201/9781420079272

  113. Shamsi, J., Urban, A. S., Imran, M., Trizio, L. D. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  ADS  Google Scholar 

  115. Harris, D. K. & Bawendi, M. G. Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211–20213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Abudayyeh, H. et al. Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas. APL Photon. 6, 036109 (2021).

    Article  CAS  ADS  Google Scholar 

  118. Ratchford, D., Shafiei, F., Kim, S., Gray, S. K. & Li, X. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 11, 1049–1054 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  119. Chen, O. et al. Compact high-quality CdSe–CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  121. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  122. Xia, P. et al. Sequential co-passivation in inas colloidal quantum dot solids enables efficient near-infrared photodetectors. Adv. Mater. 35, 2301842 (2023).

    Article  CAS  Google Scholar 

  123. Xiao, P. et al. Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning. Nat. Commun. 14, 49 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mir, W. J. et al. Lecithin capping ligands enable ultrastable perovskite-phase CsPbI3 quantum dots for Rec. 2020 bright-red light-emitting diodes. J. Am. Chem. Soc. 144, 13302–13310 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, Y. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143, 15606–15615 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Mi, C. et al. Biexciton-like Auger blinking in strongly confined CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 14, 5466–5474 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Zhao, T. et al. Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates. Nat. Chem. 15, 832–840 (2023).

    Article  PubMed  Google Scholar 

  129. Yi, Y., Sanchez, L., Gao, Y. & Yu, Y. Janus particles for biological imaging and sensing. Analyst 141, 3526–3539 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  130. Safaie, N. & Ferrier, R. C. Jr. Janus nanoparticle synthesis: overview, recent developments, and applications. J. Appl. Phys. 127, 170902 (2020).

    Article  ADS  Google Scholar 

  131. Xie, W. et al. Colloidal quantum dots enabling coherent light sources for integrated silicon-nitride photonics. IEEE J. Sel. Top. Quantum Electron. 23, 1–13 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Randy P. Sabatini, Dirk Englund, Osman M. Bakr or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almutlaq, J., Liu, Y., Mir, W.J. et al. Engineering colloidal semiconductor nanocrystals for quantum information processing. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01606-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing