Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large second-order susceptibility from a quantized indium tin oxide monolayer

Abstract

Due to their high optical transparency and electrical conductivity, indium tin oxide thin films are a promising material for photonic circuit design and applications. However, their weak optical nonlinearity has been a substantial barrier to nonlinear signal processing applications. In this study, we show that an atomically thin (~1.5 nm) indium tin oxide film in the form of an air/indium tin oxide/SiO2 quantum well exhibits a second-order susceptibility χ2 of ~1,800 pm V–1. First-principles calculations and quantum electrostatic modelling point to an electronic interband transition resonance in the asymmetric potential energy of the quantum well as the reason for this large χ2 value. As the χ2 value is more than 20 times higher than that of the traditional nonlinear LiNbO3 crystal, our indium tin oxide quantum well design can be an important step towards nonlinear photonic circuit applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Second-order nonlinearity in van der Waals 2D ITO films.
Fig. 2: Characterization of 2D ITO samples.
Fig. 3: Experimental verification of the 2D-ITO-based asymmetric QW.
Fig. 4: Theoretical analysis on the 2D ITO QW.

Similar content being viewed by others

Data availability

All related data generated and/or analysed in this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Rogers, C. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).

    CAS  PubMed  Google Scholar 

  2. Bai, B. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14, 66 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, J. et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX 2, 5 (2021).

    Google Scholar 

  4. Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

    CAS  Google Scholar 

  5. Hazan, A. et al. MXene-nanoflakes-enabled all-optical nonlinear activation function for on-chip photonic deep neural networks. Adv. Mater. 35, 2210216 (2023).

    CAS  Google Scholar 

  6. Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    CAS  Google Scholar 

  7. Qian, H. et al. Large optical nonlinearity enabled by coupled metallic quantum wells. Light Sci. Appl. 8, 13 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    PubMed  Google Scholar 

  9. Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photon. 15, 493–498 (2021).

    CAS  Google Scholar 

  10. Nauman, M. et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun. 12, 5597 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Song, Y. et al. Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater. 6, 1701287 (2018).

    Google Scholar 

  12. Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photon. 2, 1584–1591 (2015).

    CAS  Google Scholar 

  13. Rosencher, E. et al. Quantum engineering of optical nonlinearities. Science 271, 168–173 (1996).

    CAS  Google Scholar 

  14. Jang, J., Kang, Y., Cha, D., Bae, J. & Lee, S. Thin-film optical devices based on transparent conducting oxides: physical mechanisms and applications. Crystals https://doi.org/10.3390/cryst9040192 (2019).

  15. Jin, S. et al. Tuning the properties of transparent oxide conductors. Dopant ion size and electronic structure effects on CdO-based transparent conducting oxides. Ga- and In-doped CdO thin films grown by MOCVD. Chem. Mater. 20, 220–230 (2008).

    CAS  Google Scholar 

  16. Ma, Z., Li, Z., Liu, K., Ye, C. & Sorger, V. J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophoton. 4, 198–213 (2015).

    CAS  Google Scholar 

  17. Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9, 190 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong, Z. et al. Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates. Nano Lett. https://doi.org/10.1021/acs.nanolett.5b02109 (2015).

  19. Li, S.-Q. et al. Dramatically enhanced second harmonic generation in Janus group-III chalcogenide monolayers. Adv. Opt. Mater. 10, 2200076 (2022).

    CAS  Google Scholar 

  20. Alam, M., De Leon, I. & Boyd, R. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science https://doi.org/10.1126/science.aae0330 (2016).

  21. Butet, J., Brevet, P.-F. & Martin, O. J. F. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9, 10545–10562 (2015).

    CAS  PubMed  Google Scholar 

  22. De Liberato, S. Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014).

    PubMed  Google Scholar 

  23. Datta, R. S. et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3, 51–58 (2020).

    CAS  Google Scholar 

  24. Li, Q. et al. Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector. npj 2D Mater. Appl. https://doi.org/10.1038/s41699-021-00219-y (2021).

  25. Jannat, A. et al. Printable single-unit-cell-thick transparent zinc-doped indium oxides with efficient electron transport properties. ACS Nano 15, 4045–4053 (2021).

    CAS  PubMed  Google Scholar 

  26. Lin, K.-Q. et al. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun. 12, 1553 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eckardt, R. & Reintjes, J. Phase matching limitations of high efficiency second harmonic generation. IEEE J. Quantum Electron. 20, 1178–1187 (1984).

    Google Scholar 

  28. Lahon, S., Jha, P. K. & Mohan, M. Nonlinear interband and intersubband transitions in quantum dots for multiphoton photodetectors. J. Appl. Phys. 109, 054311 (2011).

    Google Scholar 

  29. Aukarasereenont, P. et al. Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chem. Soc. Rev. https://doi.org/10.1039/d1cs01166a (2022).

  30. Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035–1041 (2018).

    CAS  PubMed  Google Scholar 

  31. Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

  32. Bennett, H. S. Heavy doping effects on bandgaps, effective intrinsic carrier concentrations and carrier mobilities and lifetimes. Solid-State Electron. 28, 193–200 (1985).

    Google Scholar 

  33. Shen, Y., Lou, Y., Wang, Z. & Xu, X. In-situ growth and characterization of indium tin oxide nanocrystal rods. Coatings https://doi.org/10.3390/coatings7120212 (2017).

  34. Yu, W. J. et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 7, 13278 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  PubMed  Google Scholar 

  37. Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206 (2017).

    CAS  Google Scholar 

  38. Shree, S. et al. Interlayer exciton mediated second harmonic generation in bilayer MoS2. Nat. Commun. 12, 6894 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Breunig, I. Three-wave mixing in whispering gallery resonators. Laser Photon. Rev. 10, 569–587 (2016).

    CAS  Google Scholar 

  40. Yu, S., Wu, X., Wang, Y., Guo, X. & Tong, L. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29, 1606128 (2017).

    Google Scholar 

  41. Khan, A. R. et al. Optical harmonic generation in 2D materials. Adv. Funct. Mater. 32, 2105259 (2022).

    CAS  Google Scholar 

  42. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    PubMed  Google Scholar 

  43. Wu, Z.-J. et al. Nonlinear plasmonic frequency conversion through quasiphase matching. Phys. Rev. B https://doi.org/10.1103/PhysRevB.82.155107 (2010).

  44. Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    CAS  PubMed  Google Scholar 

  45. Setzpfandt, F. et al. Tunable generation of entangled photons in a nonlinear directional coupler. Laser Photon. Rev. 10, 131–136 (2016).

    Google Scholar 

  46. Yin, P. et al. 2D materials for nonlinear photonics and electro-optical applications. Adv. Mater. Interfaces 8, 2100367 (2021).

    Google Scholar 

  47. Li, Y. et al. Giant two-photon absorption in monolayer MoS2. Laser Photon. Rev. 9, 427–434 (2015).

    CAS  Google Scholar 

  48. Erhart, P., Klein, A., Egdell, R. G. & Albe, K. Band structure of indium oxide: indirect versus direct band gap. Phys. Rev. B 75, 153205 (2007).

    Google Scholar 

  49. Lin, J.-J. & Li, Z.-Q. Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J. Phys. Condens. Matter 26, 343201 (2014).

    PubMed  Google Scholar 

  50. Varley, J. B. & Schleife, A. Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3. Semicond. Sci. Technol. https://doi.org/10.1088/0268-1242/30/2/024010 (2015).

  51. Tang, Y. L., Huang, C. H. & Nomura, K. Vacuum-free liquid-metal-printed 2D indium-tin oxide thin-film transistor for oxide inverters. ACS Nano 16, 3280–3289 (2022).

    CAS  PubMed  Google Scholar 

  52. Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work at Zhejiang University was sponsored by the National Key Research and Development Program of China under grant no. 2021YFB2801801 and the National Natural Science Foundation of China (NNSFC) under grant nos 62005237 and 62175217. We acknowledge the Zhejiang University Micro-Nano Fabrication Center for providing the facilities and assistance.

Author information

Authors and Affiliations

Authors

Contributions

H.Q. conceived the idea. Y.Z. conducted the theoretical modelling and optical measurements. B.G., Y.T. and P.W. performed the material fabrication and characterization. Y.Z., B.G., D.L. and H.Q. contributed extensively to the writing of the manuscript. Y.Z., B.G., D.L., W.X., J.N., Y.F., H.C. and H.Q. analysed data and interpreted the details of the results. H.C. and H.Q. supervised the research.

Corresponding authors

Correspondence to Hongsheng Chen or Haoliang Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Kai-Qiang Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes 1–15 and Tables 1 and 2.

Source data

Source Data Fig. 1

Calculated dipole moment and measured reflectance data for different ITO/substrate samples.

Source Data Fig. 2

AFM data and optical measurement for 2D ITO.

Source Data Fig. 3

Second-order-nonlinearity-related optical measurement data for 2D ITO.

Source Data Fig. 4

Energy level number relation for ITO-based QW and wavelength- and angle-dependent optical measurements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, B., Lepage, D. et al. Large second-order susceptibility from a quantized indium tin oxide monolayer. Nat. Nanotechnol. 19, 463–470 (2024). https://doi.org/10.1038/s41565-023-01574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01574-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing