Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity

Abstract

Trained immunity enhances the responsiveness of immune cells to subsequent infections or vaccinations. Here we demonstrate that pre-vaccination with bacteria-derived outer-membrane vesicles, which contain large amounts of pathogen-associated molecular patterns, can be used to potentiate, and enhance, tumour vaccination by trained immunity. Intraperitoneal administration of these outer-membrane vesicles to mice activates inflammasome signalling pathways and induces interleukin-1β secretion. The elevated interleukin-1β increases the generation of antigen-presenting cell progenitors. This results in increased immune response when tumour antigens are delivered, and increases tumour-antigen-specific T-cell activation. This trained immunity increased protection from tumour challenge in two distinct cancer models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Previous administration of OMVs enhanced tumour vaccinations.
Fig. 2: Previous administration of OMVs induced transcriptomic alterations in DCs after tumour vaccinations, and caused lineage shifts and epigenetic remodelling of haematopoietic progenitor cells.
Fig. 3: OMVs induced myelopoiesis changes by stimulating IL-1β secretion.
Fig. 4: OMVs induced IL-1β production through NLRP3 inflammasome signalling.
Fig. 5: OMVs activated inflammasome signalling by delivering LPS into cytosol.
Fig. 6: Schematic illustration of immune mobilization based on OMV-induced trained immunity to enhance tumour vaccinations.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. There are no data from third-party or publicly available datasets. The accession number for the raw data files for the transcriptome and ATAC sequencing reported in this paper is NCBI PRJNA861796. Other source data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data for Figs. 15 are available in separate source data files for Figs. 1b,e–g, 2a–c,e–g,i,k, 3a–b,e,d, g-i, 4b–c,e,g–j and 5b,e,g–j, respectively. Source data for Extended Data Fig. 1 are available in separate source data files for Extended Data Fig. 1a–b,d–f. Source data for PDFs 1–3 are available in separate source data files for Figs. 1a, 4c,d and 5c,d. Supplementary XLSs 1–43 are available in separate supplementary files for Supplementary Figs. 1b, 3b,c, 4b,c, 6b,d–f, 7b–d, 8c–g, 11a–c, 16b–e, 17b,c, 18b, 21, 23b,c, 24, 25a,b, 26b–e, 27, 28b,c, 29a–d and 30a,b, respectively. Supplementary Fig. 1 and Supplementary PDFs 1–5 are available in separate supplementary files for Supplementary Figs. 18a, 19, 20, 28a,c and 29d, respectively. Source data are provided with this paper.

References

  1. Saxena, M., van der, Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, L. et al. Nanovaccine’s rapid induction of anti-tumor immunity significantly improves malignant cancer immunotherapy. Nano Today 35, 100923 (2020).

    Article  CAS  Google Scholar 

  3. Gardner, A. & Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 37, 855–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, W., Zhou, Z., Lau, J., Hu, S. & Chen, X. Functional T cell activation by smart nanosystems for effective cancer immunotherapy. Nano Today 27, 28–47 (2019).

    Article  CAS  Google Scholar 

  5. Lee, D. Y., Huntoon, K., Wang, Y., Jiang, W. & Kim, B. Y. S. Harnessing innate immunity using biomaterials for cancer immunotherapy. Adv. Mater. 33, 2007576 (2021).

    Article  CAS  Google Scholar 

  6. Liang, J. & Zhao, X. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biol. Med. 18, 352–371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, G., Zhu, M., Zhao, X. & Nie, G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv. Drug. Deliv. Rev. 176, 113889 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Cabral, M. G. The phagocytic capacity and immunological potency of human dendritic cells is improved by α2,6-sialic acid deficiency. Immunology 138, 235–245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, N. et al. Comparison of immunoregulatory effects of polysaccharides from three natural herbs and cellular uptake in dendritic cells. Int. J. Biol. Macromol. 93, 940–951 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Patin, E. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 19, 302–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Dominguez-Andres, J. & Netea, M. G. Long-term reprogramming of the innate immune system. J. Leukoc. Biol. 105, 329–338 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25, 13–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e19 (2018).

  17. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jentho, E. et al. Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proc. Natl Acad. Sci. USA 118, e2102698118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bekkering, S., Dominguez-Andres, J., Joosten, L. A. B., Riksen, N. P. & Netea, M. G. Trained immunity: reprogramming innate immunity in health and disease. Annu. Rev. Immunol. 39, 667–693 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Kleinnijenhuis, J. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate. Immunol. 6, 152–158 (2014).

    Article  CAS  Google Scholar 

  21. Novakovic, B. et al. β-glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167, 1354–1368.e14 (2016).

  22. Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crisan, T. O. et al. Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc. Natl Acad. Sci. USA 114, 5485–5490 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teufel, L. U., Arts, R. J. W., Netea, M. G., Dinarello, C. A. & Joosten, L. A. B. IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 150, 155773 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Moorlag, S. J. C. F. M., Roring, R. J., Joosten, L. A. B. & Netea, M. G. The role of the interleukin-1 family in trained immunity. Immunol. Rev. 281, 28–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Swanson, K. V., Deng, M. & Ting, J. PY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Priem, B. et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183, 786–801.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, M. et al. Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity. Nano Today 35, 101007 (2020).

    Article  CAS  Google Scholar 

  33. Yue, Y. et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat. Biomed. Eng. 6, 898–909 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y. et al. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv. Mater. 34, e2109984 (2022).

    Article  PubMed  Google Scholar 

  35. Cheng, K. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via plug-and-display technology. Nat. Commun. 12, 2041 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang, J. et al. Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells. Fundamental Res. 2, 23–36 (2022).

    Article  CAS  Google Scholar 

  37. Rathinam, V. A. K., Zhao, Y. & Shao, F. Innate immunity to intracellular LPS. Nat. Immunol. 20, 527–533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vanaja, S. K. et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165, 1106–1119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson, J. C. et al. Gene signature of antigen processing and presentation machinery predicts response to checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma. J. Immunother. Cancer 8, e000974 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kelly, A. & Trowsdale, J. Genetics of antigen processing and presentation. Immunogenetics 71, 161–170 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Mangold, C. A. et al. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 16–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Vasu, C. et al. CD80 and CD86 C domains play an important role in receptor binding and co-stimulatory properties. Int. Immunol. 15, 167–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, B. et al. CCR9 and CCL25: a review of their roles in tumor promotion. J. Cell. Physiol. 235, 9121–9132 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Fischer, A. et al. ZAP70: a master regulator of adaptive immunity. Semin. Immunopathol. 32, 107–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, Q. et al. Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids Res. 43, 9680–9693 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Karrich, J. J. et al. The transcription factor Spi-B regulates human plasmacytoid dendritic cell survival through direct induction of the antiapoptotic gene BCL2-A1. Blood 119, 5191–5200 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Schotte, R., Nagasawa, M., Weijer, K., Spits, H. & Blom, B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J. Exp. Med. 200, 1503–1509 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanada, S. et al. Critical role of transcription factor PU.1 in the expression of CD80 and CD86 on dendritic cells. Blood 117, 2211–2222 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Cheng, S. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gillard, J. et al. BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial. NPJ Vaccines 7, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Acevedo, R. et al. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, 121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2021YFA0909900 and 2022YFB3808100, X.Z.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000, G.N.), the CAS Project for Young Scientists in Basic Research (YSBR-010, X.Z.), the Beijing Natural Science Foundation (Z200020, X.Z.) and the National Natural Science Foundation of China (32222045 and 32171384, X.Z.). In addition, we would like to thank Wenjuan Zhang for her help on cryo-EM sampling and imaging at the Cryo-electron Microscopy Platform, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (IGDB).

Author information

Authors and Affiliations

Authors

Contributions

G.L., N.M., K.C., X.Z. and G.N. designed the research. G.L., N.M., K.C., Q.F., X.M., Y.Y., Y.L., T.Z., X.G., J.L., L.Z. and X.W. performed the research. Z.R. and Y.-X.F. provided professional support for animal studies. All authors analysed and interpreted the data. G.L., X.Z. and G.N. wrote the paper.

Corresponding authors

Correspondence to Xiao Zhao or Guangjun Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Willem Mulder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 OMVs improved the antitumour efficacy of subsequent tumour vaccinations.

(a) The antitumour efficacy enhancement of subsequent tumour vaccinations in pulmonary metastatic B16-OVA tumour model mice (n = 6 biologically independent mice per group). (b) Antitumour efficacy enhancement of subsequent tumour vaccinations in subcutaneous MC38 tumour models mice (n = 8 biologically independent mice per group). (c–f) The antitumour efficacy enhancement of subsequent tumour vaccinations in long-term immune memory models. (C) Schematic illustration of the experiment schedule and group information. (D) Proportions of effector memory T cells (Tem, CD3+CD8+CD44+CD62L) and central memory T cells (Tcm, CD3+CD8+CD44+CD62L+) in splenocytes on day 60, as determined by flow cytometry (n = 6 biologically independent mice per group). (E) Growth curves of the subcutaneous tumours in each mouse challenged by subcutaneous inoculation with MC38 cells (n = 10). (F) Survival curves of the mice from day 90 (n = 10). The data were processed on GraphPad Prism software (v8.3.0.538) and are presented as the mean ± SD. The P values were determined using one-way ANOVA with a Tukey post hoc test. Survival significance was analysed by the two-sided log-rank test. ns, no significance; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Source data

Supplementary information

Supplementary Information

Table of contents, Supplementary Discussion, Figs. 1–35 and Tables 1–3.

Reporting Summary

Supplementary Table 1

Raw dataset for Supplementary Fig. 1b.

Supplementary Table 2

Raw dataset for Supplementary Fig. 3b.

Supplementary Table 3

Raw dataset for Supplementary Fig. 3c.

Supplementary Table 4

Raw dataset for Supplementary Fig. 4b.

Supplementary Table 5

Raw dataset for Supplementary Fig. 4c.

Supplementary Table 6

Raw dataset for Supplementary Fig. 6b.

Supplementary Table 7

Raw dataset for Supplementary Fig. 6d.

Supplementary Table 8

Raw dataset for Supplementary Fig. 6e.

Supplementary Table 9

Raw dataset for Supplementary Fig. 6f.

Supplementary Table 10

Raw dataset for Supplementary Fig. 7b.

Supplementary Table 11

Raw dataset for Supplementary Fig. 7c.

Supplementary Table 12

Raw dataset for Supplementary Fig. 7d.

Supplementary Table 13

Raw dataset for Supplementary Fig. 8c.

Supplementary Table 14

Raw dataset for Supplementary Fig. 8d.

Supplementary Table 15

Raw dataset for Supplementary Fig. 8e.

Supplementary Table 16

Raw dataset for Supplementary Fig. 8f.

Supplementary Table 17

Raw dataset for Supplementary Fig. 8g.

Supplementary Table 18

Raw dataset for Supplementary Fig. 11a.

Supplementary Table 19

Raw dataset for Supplementary Fig. 11b.

Supplementary Table 20

Raw dataset for Supplementary Fig. 11c.

Supplementary Table 21

Raw dataset for Supplementary Fig. 16b.

Supplementary Table 22

Raw dataset for Supplementary Fig. 16c.

Supplementary Table 23

Raw dataset for Supplementary Fig. 16d.

Supplementary Table 24

Raw dataset for Supplementary Fig. 16e.

Supplementary Table 25

Raw dataset for Supplementary Fig. 17b.

Supplementary Table 26

Raw dataset for Supplementary Fig. 17c.

Supplementary Table 27

Raw dataset for Supplementary Fig. 18b.

Supplementary Table 28

Raw dataset for Supplementary Fig. 21.

Supplementary Table 29

Raw dataset for Supplementary Fig. 23b.

Supplementary Table 30

Raw dataset for Supplementary Fig. 23c.

Supplementary Table 31

Raw dataset for Supplementary Fig. 24.

Supplementary Table 32

Raw dataset for Supplementary Fig. 25a.

Supplementary Table 33

Raw dataset for Supplementary Fig. 25b.

Supplementary Table 34

Raw dataset for Supplementary Fig. 26b.

Supplementary Table 35

Raw dataset for Supplementary Fig. 26c.

Supplementary Table 36

Raw dataset for Supplementary Fig. 26d.

Supplementary Table 37

Raw dataset for Supplementary Fig. 26e.

Supplementary Table 38

Raw dataset for Supplementary Fig. 27.

Supplementary Table 39

Raw dataset for Supplementary Fig. 28b,c.

Supplementary Table 40

Raw dataset for Supplementary Fig. 29a,b.

Supplementary Table 41

Raw dataset for Supplementary Fig. 29c.

Supplementary Table 42

Raw dataset for Supplementary Fig. 29d.

Supplementary Table 43

Raw dataset for Supplementary Fig. 30a,b.

Supplementary Fig. 1

Unprocessed fluorescence images of blood samples for Supplementary Fig. 18a.

Supplementary PDF 1

Unprocessed fluorescence images of organs for Supplementary Fig. 19.

Supplementary PDF 2

Unprocessed fluorescence images of lower limb bones for Supplementary Fig. 20.

Supplementary PDF 3

Unprocessed HE staining of lungs for Supplementary Fig. 28a.

Supplementary PDF 4

Unprocessed immunohistochemical staining of CD8 + T cells in lung tissues for Supplementary Fig. 28c.

Supplementary PDF 5

Unprocessed immunohistochemical staining of CD8 + T cells in tumour tissues for Supplementary Fig. 29d.

Source data

Source Data Fig. 1

Unprocessed TEM and cryo-EM images of OMVs for Fig. 1a.

Source Data Fig. 4

Unprocessed immunofluorescence images and western blots for Fig. 4c,d.

Source Data Fig. 5

Unprocessed immunofluorescence images and western blots for Fig. 5c,d.

Source Data Fig. 1

Raw dataset for Fig. 1b,e–g.

Source Data Fig. 2

Raw dataset for Fig. 2a–c,e–g,i,k.

Source Data Fig. 3

Raw dataset for Fig. 3a,b,d,e,g–i.

Source Data Fig. 4

Raw dataset for Fig. 4b,c,e,g–j.

Source Data Fig. 5

Raw dataset for Fig. 5b,e,g–j.

Source Data Extended Data Fig. 1

Raw dataset for Extended Data Fig. 1a–b,d–f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Ma, N., Cheng, K. et al. Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity. Nat. Nanotechnol. 19, 387–398 (2024). https://doi.org/10.1038/s41565-023-01553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01553-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research