Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis

Abstract

The electrochemical reduction of CO2 in acidic conditions enables high single-pass carbon efficiency. However, the competing hydrogen evolution reaction reduces selectivity in the electrochemical reduction of CO2, a reaction in which the formation of CO, and its ensuing coupling, are each essential to achieving multicarbon (C2+) product formation. These two reactions rely on distinct catalyst properties that are difficult to achieve in a single catalyst. Here we report decoupling the CO2-to-C2+ reaction into two steps, CO2-to-CO and CO-to-C2+, by deploying two distinct catalyst layers operating in tandem to achieve the desired transformation. The first catalyst, atomically dispersed cobalt phthalocyanine, reduces CO2 to CO with high selectivity. This process increases local CO availability to enhance the C–C coupling step implemented on the second catalyst layer, which is a Cu nanocatalyst with a Cu–ionomer interface. The optimized tandem electrodes achieve 61% C2H4 Faradaic efficiency and 82% C2+ Faradaic efficiency at 800 mA cm−2 at 25 °C. When optimized for single-pass utilization, the system reaches a single-pass carbon efficiency of 90 ± 3%, simultaneous with 55 ± 3% C2H4 Faradaic efficiency and a total C2+ Faradaic efficiency of 76 ± 2%, at 800 mA cm−2 with a CO2 flow rate of 2 ml min−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spatially decoupled strategy for acidic CO2RR via tandem catalysis.
Fig. 2: Synthesis and structural analysis of atomically dispersed CoPc@HC.
Fig. 3: Acidic CO2RR performance.
Fig. 4: DFT calculations and in situ Raman measurements.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

    Article  CAS  Google Scholar 

  4. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  7. Chen, C. et al. Boosting the productivity of electrochemical CO2 reduction to multi-carbon products by enhancing CO2 diffusion through a porous organic cage. Angew. Chem. Int. Ed. 61, e202202607 (2022).

    Article  ADS  CAS  Google Scholar 

  8. Weng, L.-C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    Article  CAS  Google Scholar 

  9. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    Article  CAS  Google Scholar 

  10. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  11. Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Inter. 13, 15132–15142 (2021).

    Article  CAS  Google Scholar 

  13. Iizuka, A. et al. Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis. Sep. Purif. Technol. 101, 49–59 (2012).

    Article  CAS  Google Scholar 

  14. Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A. A. & Rezaei, F. Carbon capture and utilization update. Energy Technol. 5, 834–849 (2017).

    Article  Google Scholar 

  15. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  CAS  Google Scholar 

  16. Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021).

    Article  ADS  CAS  Google Scholar 

  17. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  18. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Monteiro, M. C. O., Philips, M. F., Schouten, K. J. P. & Koper, M. T. M. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun. 12, 4943 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    Article  CAS  Google Scholar 

  21. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Mariano, R. G. et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat. Mater. 20, 1000–1006 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  25. Banerjee, S., Gerke, C. S. & Thoi, V. S. Guiding CO2RR selectivity by compositional tuning in the electrochemical double layer. Acc. Chem. Res. 55, 504–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Shi, C., Hansen, H. A., Lausche, A. C. & Norskov, J. K. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–4727 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Zhang, Y.-J., Sethuraman, V., Michalsky, R. & Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014).

    Article  CAS  Google Scholar 

  30. Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Chen, C. et al. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020).

    Article  CAS  Google Scholar 

  33. Wang, H. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15, 131–137 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Wang, Y., Zheng, X. & Wang, D. Design concept for electrocatalysts. Nano Res. 15, 1730–1752 (2022).

    Article  ADS  CAS  Google Scholar 

  35. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  36. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2019).

    Article  ADS  Google Scholar 

  38. Hung, S. F. et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat. Commun. 13, 819 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Skafte, T. L. et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat. Energy 4, 846–855 (2019).

    Article  ADS  CAS  Google Scholar 

  40. Yan, J. et al. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels. J. Power Sources 252, 79–84 (2014).

    Article  ADS  CAS  Google Scholar 

  41. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  42. Luc, W., Rosen, J. & Jiao, F. An Ir-based anode for a practical CO2 electrolyzer. Catal. Today 288, 79–84 (2017).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  44. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  CAS  Google Scholar 

  45. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  50. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  ADS  CAS  Google Scholar 

  51. Fan, Q. et al. Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10, 280–301 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ontario Research Foundation’s Research Excellence programme, the Natural Sciences and Engineering Research Council (NSERC) of Canada and TotalEnergies SE. This research used synchrotron resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy, Office of Science by Argonne National Laboratory, and was supported by the US Department of Energy under contract no. DE-AC02-06CH11357 as well as by the Canadian Light Source and its funding partners. All DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP) and the Niagara supercomputer at the SciNet HPC Consortium. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada Ltd, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, the Ontario Research Fund—Research Excellence and the University of Toronto. We acknowledge the Ontario Centre for the Characterization of Advanced Materials (OCCAM) for characterization facilities. J.D. acknowledges financial support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y2022006).

Author information

Authors and Affiliations

Authors

Contributions

E.H.S. supervised the project. Y.C. and E.H.S. conceived the idea. Y.C. designed the synthesis of the catalysts and carried out all the electrochemical experiments. X.-Y.L. with the help of P.O. carried out the DFT calculation. Z.C. performed the in situ Raman measurements. A.O. contributed to the preparation of IrOx-coated Ti mesh electrodes and the energy assessment. J.D. and J.A. performed the X-ray absorption spectroscopy measurements. J.D. helped to analyse the X-ray absorption spectroscopy data. J.Z., Q.Q., X.W., S.W. and C.Q. helped to characterize the materials. S.L. performed the COMSOL simulation. J.E.H. contributed to manuscript editing. A.O., J.Z., B.-H.L., C.T., Y.X., R.K.M., Y.Z., Y. Liu, H.L., H.S. and D.S. assisted with the data analysis and discussions. D.W. and Y. Li contributed to the design of catalysts and assisted in conceiving the idea. Y.C., X.-Y.L., Z.C. and E.H.S. wrote the manuscript. All authors discussed the results and assisted during manuscript preparation.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

There is a US provisional patent application (63/482.861) titled ‘Electroreduction of CO2 in acidic conditions using a catalyst having a dual CO generation and C-C coupling function’ filed by the authors Y.C., X.-Y.L., Z.C. and E.H.S. and their institutions. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Joel Ager III, Kazuhiro Takanabe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–68, Notes 1–12 and Tables 1–6.

Supplementary Data 1

The atomic coordination of the optimized models and related reaction transition states.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, XY., Chen, Z. et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 19, 311–318 (2024). https://doi.org/10.1038/s41565-023-01543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01543-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing