Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule force stability of the SARS-CoV-2–ACE2 interface in variants-of-concern

Abstract

Mutations in SARS-CoV-2 have shown effective evasion of population immunity and increased affinity to the cellular receptor angiotensin-converting enzyme 2 (ACE2). However, in the dynamic environment of the respiratory tract, forces act on the binding partners, which raises the question of whether not only affinity but also force stability of the SARS-CoV-2–ACE2 interaction might be a selection factor for mutations. Using magnetic tweezers, we investigate the impact of amino acid substitutions in variants of concern (Alpha, Beta, Gamma and Delta) and on force-stability and bond kinetic of the receptor-binding domain–ACE2 interface at a single-molecule resolution. We find a higher affinity for all of the variants of concern (>fivefold) compared with the wild type. In contrast, Alpha is the only variant of concern that shows higher force stability (by 17%) compared with the wild type. Using molecular dynamics simulations, we rationalize the mechanistic molecular origins of this increase in force stability. Our study emphasizes the diversity of contributions to the transmissibility of variants and establishes force stability as one of the several factors for fitness. Understanding fitness advantages opens the possibility for the prediction of probable mutations, allowing a rapid adjustment of therapeutics, vaccines and intervention measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A single-molecule tethered ligand assay to study RBD binding to ACE2 for VOCs of SARS-CoV-2.
Fig. 2: Effects of VOCs on interface force stability and affinity.
Fig. 3: Effects of VOCs on the contact network at the RBD–ACE2 interface.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data can be obtained from the corresponding author upon request.

Code availability

Code can be obtained from the corresponding author upon request.

References

  1. Laffeber, C., Koning, K. D., Kanaar, R. & Lebbink, J. H. G. Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J. Mol. Biol. 433, 167058–167058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barton, M. I. et al. Effects of common mutations in the SARS-CoV-2 spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife 10, e70658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Majumdar, P. & Niyogi, S. SARS-CoV-2 mutations: the biological trackway towards viral fitness. Epidemiol. Infect. 149, E110 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Bayarri-Olmos, R. et al. The alpha/B.1.1.7 SARS-CoV-2 variant exhibits significantly higher affinity for ACE-2 and requires lower inoculation doses to cause disease in K18-hACE2 mice. eLife 10, e70002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hill, D. B. et al. Force generation and dynamics of individual cilia under external loading. Biophys. J. 98, 57–66 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, C.-T. et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 186, 112–130.e20 (2023).

  7. Milles, L. F., Schulten, K., Gaub, H. E. & Bernardi, R. C. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 359, 1527–1533 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alsteens, D. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12, 177–183 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Koehler, M., Delguste, M., Sieben, C., Gillet, L. & Alsteens, D. Initial step of virus entry: virion binding to cell-surface glycans. Annu. Rev. Virol. 7, 143–165 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Sokurenko, E. V., Vogel, V. & Thomas, W. E. Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but…widespread? Cell Host Microbe 4, 314–323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10, e69091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng, Bin, et al. S373P mutation stabilizes the receptor-binding domain of the spike protein in omicron and promotes binding. JACS Au https://doi.org/10.1021/jacsau.3c00142 (2023).

  13. Koehler, M. et al. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat. Commun. 12, 6977 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, J. et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, W. et al. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Biophys. J. 120, 1011–1019 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X. et al. Pathogen-host adhesion between SARS-CoV-2 spike proteins from different variants and human ACE2 studied at single-molecule and single-cell levels. Emerging Microbes Infect. 11, 2658–2669 (2022).

    Article  CAS  Google Scholar 

  17. Zhu, R. et al. Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level. Nat. Commun. 13, 7926 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bauer, M. S. et al. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc. Natl Acad. Sci. USA 119, e2114397119 (2022).

  19. Bauer, M. S. et al. A tethered ligand assay to probe the SARS-CoV-2 ACE2 interaction under constant force. Preprint at biorxiv https://doi.org/10.1101/2020.09.27.315796 (2020).

  20. Löf, A. et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc. Natl Acad. Sci. USA 116, 18798–18807 (2019).

  21. Lansdorp, B. M. & Saleh, O. A. Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Rev. Sci. Instrum. 83, 025115 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Velthuis, A. J. W. T., Kerssemakers, J. W. J., Lipfert, J. & Dekker, N. H. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys. J. 99, 1292–1302 (2010).

    Article  Google Scholar 

  23. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lipfert, J., Hao, X. & Dekker, N. H. Quantitative modeling and optimization of magnetic tweezers. Biophys. J. 96, 5040–5049 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ott, W. et al. Elastin-like polypeptide linkers for single-molecule force spectroscopy. ACS Nano 11, 6346–6354 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J., Zhang, C. Z., Zhang, X. & Springer, T. A. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466, 992–995 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shrestha, P. et al. Single-molecule mechanical fingerprinting with DNA nanoswitch calipers. Nat. Nanotechnol. 16, 1362–1370 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, D., Ward, A., Halvorsen, K. & Wong, W. P. Multiplexed single-molecule force spectroscopy using a centrifuge. Nat. Commun. 7, 11026 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kilchherr, F. et al. Single-molecule dissection of stacking forces in DNA. Science 353, aaf5508 (2016).

    Article  PubMed  Google Scholar 

  30. Le, S., Yu, M. & Yan, J. Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin—talin/α-catenin linkages. Sci. Adv. 5, eaav2720 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halvorsen, K., Schaak, D. & Wong, W. P. Nanoengineering a single-molecule mechanical switch using DNA self-assembly. Nanotechnology 22, 494005 (2011).

    Article  PubMed  Google Scholar 

  32. Kostrz, D. et al. A modular DNA scaffold to study protein-protein interactions at single-molecule resolution. Nat. Nanotechnol. 14, 988–993 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Gong, S. Y. et al. Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity. Virology 563, 134–145 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Rajah, M. M. et al. SARS‐CoV‐2 Alpha, Beta, and Delta variants display enhanced spike‐mediated syncytia formation. EMBO J. 40, e108944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gobeil, S. M. C. et al. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science 373, eabi6226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren, W. et al. Characterization of SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by cell entry and immune evasion. mBio 13, e00099–00022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. McCallum, M. et al. Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science 374, 1621–1626 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Albrecht, C. et al. DNA: a programmable force sensor. Science 301, 367–370 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Gruber, S. et al. Designed anchoring geometries determine lifetimes of biotin–streptavidin bonds under constant load and enable ultra-stable coupling. Nanoscale 12, 21131–21137 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform 54, 5.6.1–5.6.37 (2016).

    Article  Google Scholar 

  41. Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Melo, M. C. R., Bernardi, R. C., Fuente-Nunez, C. D. L. & Luthey-Schulten, Z. Generalized correlation-based dynamical network analysis: a new high-performance approach for identifying allosteric communications in molecular dynamics trajectories. J. Chem. Phys. 153, 134104 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Schoeler, C. et al. Mapping mechanical force propagation through biomolecular complexes. Nano Lett. 15, 7370–7376 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Liu, H. et al. The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell Res. 31, 720–722 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, P. et al. Receptor binding and complex structures of human ACE2 to spike RBD from Omicron and Delta SARS-CoV-2. Cell 185, 630–640.e610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dulin, D., Lipfert, J., Moolman, M. C. & Dekker, N. H. Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat. Rev. Genet. 14, 9–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. V’kovski, P., Kratzel, A., Steiner, S, Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2020).

  50. Michaud, W. A., Boland, G. M. & Rabi, S. A. The SARS-CoV-2 spike mutation D614G increases entry fitness across a range of ACE2 levels, directly outcompetes the wild type, and is preferentially incorporated into trimers. Preprint at bioRxiv https://doi.org/10.1101/2020.08.25.267500 (2020).

  51. Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Escalera, A. et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe 30, 373–387.e377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ulrich, L. et al. Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature 602, 307–313 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Buss, L. F. et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science 371, 288–292 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Sun, K. et al. SARS-CoV-2 transmission, persistence of immunity, and estimates of Omicron’s impact in South African population cohorts. Sci. Transl. Med. 14, eabo7081 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, C. et al. The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host Microbe 30, 53–68.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bayarri-Olmos, R. et al. Functional effects of receptor-binding domain mutations of SARS-CoV-2 B.1.351 and P.1 variants. Front. Immunol. 12, 757197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu, J. et al. Increased immune escape of the new SARS-CoV-2 variant of concern Omicron. Cell Mol. Immunol. 19, 293–295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ju, B. et al. Immune escape by SARS-CoV-2 Omicron variant and structural basis of its effective neutralization by a broad neutralizing human antibody VacW-209. Cell Res. 32, 491–494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fan, Y. et al. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Sig. Transduct. Target Ther. 7, 141 (2022).

    Article  CAS  Google Scholar 

  64. Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Li, B. et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nat. Commun. 13, 460 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Komatsu, T. et al. Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2). DNA Sequence 13, 217–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Marra, M. A. et al. The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Milles, L. F. & Gaub, H. E. Is mechanical receptor ligand dissociation driven by unfolding or unbinding? Preprint at bioRxiv https://doi.org/10.1101/593335 (2019).

  70. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walker, P. U., Vanderlinden, W. & Lipfert, J. Dynamics and energy landscape of DNA plectoneme nucleation. Phys. Rev. E 98, 042412 (2018).

    Article  ADS  CAS  Google Scholar 

  72. van Loenhout, M. T., Kerssemakers, J. W., De Vlaminck, I. & Dekker, C. Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification. Biophys. J. 102, 2362–2371 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cnossen, J. P., Dulin, D. & Dekker, N. H. An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev. Sci. Instrum. 85, 103712 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Lipfert, J. et al. Methods and protocols. Methods Mol. Biol. 582, 71–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Yu, Z. et al. A force calibration standard for magnetic tweezers. Rev. Sci. Instrum. 85, 123114 (2014).

    Article  ADS  PubMed  Google Scholar 

  76. De Vlaminck, I., Henighan, T., van Loenhout, M. T., Burnham, D. R. & Dekker, C. Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS ONE 7, e41432 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Zimmermann, J. L., Nicolaus, T., Neuert, G. & Blank, K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc. 5, 975–985 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Yin, J., Lin, A. J., Golan, D. E. & Walsh, C. T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, I., Dorr, B. M. & Liu, D. R. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl Acad. Sci. USA 108, 11399–11404 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Durner, E., Ott, W., Nash, M. A. & Gaub, H. E. Post-translational sortase-mediated attachment of high-strength force spectroscopy handles. ACS Omega 2, 3064–3069 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Ribeiro, J. V. et al. QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci. Rep. 6, 26536 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bernardi, R. C. et al. Mechanisms of nanonewton mechanostability in a protein complex revealed by molecular dynamics simulations and single-molecule force spectroscopy. J. Am. Chem. Soc. 141, 14752–14763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1998).

    Article  ADS  Google Scholar 

  87. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  ADS  CAS  Google Scholar 

  88. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap 372–391 (CRC Press, 1994).

  90. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  Google Scholar 

  92. Hagberg, A. A., Schult, D. A. & Swart, P. J. ExplorkX. In Proc. 7th Python in Science Conference https://www.osti.gov/servlets/purl/960616 (2008).

  93. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Bos, J. de Graf and D. Dulin for helpful discussions and L. Schendel, N. Beier, B. Böck, E. Durner, S. D. Pritzl and C. Körösy for help with experiments. This study was supported by German Research Foundation Projects 386143268 and 111166240, a Human Frontier Science Program Cross Disciplinary Fellowship (LT000395/2020C); European Molecular Biology Organization Non-Stipendiary long-term fellowship (ALTF 1047-2019) to L.F.M.; ERC Consolidator grant ‘ProForce’; and the Physics Department of LMU Munich. R.C.B., P.S.F.C.G. and M.C.R.M. are supported by the National Science Foundation under grant MCB-2143787, by start-up funds provided by Auburn University, and R.C.B. additionally receives support from the National Institute of General Medical Sciences (NIGMS) of NIH through grant R24-GM145965.

Author information

Authors and Affiliations

Authors

Contributions

M.S.B., S.G., A.H., M.C.R.M., P.S.F.C.G., H.E.G., R.C.B. and J.L. designed the research. M.S.B., S.G. and A.H. built the instruments and performed the experiments. P.S.F.C.G., M.C.R.M. and R.C.B. performed and analysed the simulations. M.S.B., S.G., A.H., L.F.M. and T.N. contributed the new reagents and analytic tools. M.S.B., S.G. and A.H. analysed the experimental data. M.S.B., S.G., A.H., M.C.R.M., P.S.F.C.G., H.E.G., R.C.B. and J.L. wrote the paper with input from all authors.

Corresponding author

Correspondence to Jan Lipfert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Ankita Ray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1 and 2, references and full protein sequences.

Source data

Source Data Fig. 1

Example results from MT force spectroscopy: fraction bound versus force determined by MT: example magnetic traces, lifetimes bound and dissociated versus force from the MT data. Source Data Fig. 2 Results from MT force spectroscopy and affinity measurements for VOCs. Source Data Fig. 3 Results from the correlation analysis based on MD simulations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M.S., Gruber, S., Hausch, A. et al. Single-molecule force stability of the SARS-CoV-2–ACE2 interface in variants-of-concern. Nat. Nanotechnol. 19, 399–405 (2024). https://doi.org/10.1038/s41565-023-01536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01536-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing