Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model

A Publisher Correction to this article was published on 17 November 2023

This article has been updated

Abstract

Commencing with the breakdown of immune tolerance, multiple pathogenic factors, including synovial inflammation and harmful cytokines, are conjointly involved in the progression of rheumatoid arthritis. Intervening to mitigate some of these factors can bring a short-term therapeutic effect, but other unresolved factors will continue to aggravate the disease. Here we developed a ceria nanoparticle-immobilized mesenchymal stem cell nanovesicle hybrid system to address multiple factors in rheumatoid arthritis. Each component of this nanohybrid works individually and also synergistically, resulting in comprehensive treatment. Alleviation of inflammation and modulation of the tissue environment into an immunotolerant-favourable state are combined to recover the immune system by bridging innate and adaptive immunity. The therapy is shown to successfully treat and prevent rheumatoid arthritis by relieving the main symptoms and also by restoring the immune system through the induction of regulatory T cells in a mouse model of collagen-induced arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design, fabrication and characterization of Ce-MSCNVs.
Fig. 2: Anti-inflammatory and immunomodulatory effect of Ce-MSCNVs in macrophages (M1-to-M2 polarization) and the consequent chondroprotection in vitro.
Fig. 3: Immunomodulatory effect of Ce-MSCNVs on DCs and the resultant induction of Treg cells in vitro.
Fig. 4: In vivo therapeutic effect of Ce-MSCNVs after intra-articular injection.
Fig. 5: Immune restoration by Ce-MSCNVs via Treg cell induction and rebalance of TH17/Treg cell ratio.
Fig. 6: Prophylactic effect of Ce-MSCNVs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Source data are available for Figs. 16 and Supplementary Figs. 1, 3, 516, 2023, 2533, 35 and 36 in the associated source data file. Additional materials from this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Change history

References

  1. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    CAS  Google Scholar 

  2. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  Google Scholar 

  3. Burmester, G. R., Feist, E. & Dörner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 77–88 (2014).

    CAS  Google Scholar 

  4. Van Vollenhoven, R. F. Treatment of rheumatoid arthritis: state of the art. Nat. Rev. Rheumatol. 5, 531–541 (2009).

    Google Scholar 

  5. Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).

    Google Scholar 

  6. Zhu, Y. et al. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today 42, 101358 (2022).

    CAS  Google Scholar 

  7. Esensten, J. H., Wofsy, D. & Bluestone, J. A. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 560–565 (2009).

    CAS  Google Scholar 

  8. Kim, J. et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria Co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 13, 3206–3217 (2019).

    CAS  Google Scholar 

  9. Zhu, L. et al. TSC1 controls macrophage polarization to prevent inflammatory disease. Nat. Commun. 5, 4696 (2014).

    CAS  Google Scholar 

  10. Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Immunol. 13, 291–301 (2017).

    CAS  Google Scholar 

  11. Yang, C. et al. Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat. Commun. 13, 4866 (2022).

    CAS  Google Scholar 

  12. Wu, W. et al. Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. Nano Today 42, 101377 (2022).

    CAS  Google Scholar 

  13. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    CAS  Google Scholar 

  14. Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    CAS  Google Scholar 

  15. Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).

    CAS  Google Scholar 

  16. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    CAS  Google Scholar 

  17. Kim, C. K. et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. 51, 11039–11043 (2012).

    CAS  Google Scholar 

  18. Soh, M. et al. Ceria–zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem. Int. Ed. 56, 11399–11403 (2017).

    CAS  Google Scholar 

  19. Nguyen, L., Bang, S. & Noh, I. Tissue regeneration of human mesenchymal stem cells on porous gelatin micro-carriers by long-term dynamic in vitro culture. Tissue Eng. Regen. Med. 16, 19–28 (2019).

    CAS  Google Scholar 

  20. Jiang, W. & Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif. 53, e12712 (2022).

    Google Scholar 

  21. Suryaprakash, S. et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett. 19, 1701–1705 (2019).

    CAS  Google Scholar 

  22. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    CAS  Google Scholar 

  23. Shahir, M. et al. Effect of mesenchymal stem cell‐derived exosomes on the induction of mouse tolerogenic dendritic cells. J. Cell. Physiol. 235, 7043–7055 (2020).

    CAS  Google Scholar 

  24. Gao, J., Gu, H. & Xu, B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009).

    CAS  Google Scholar 

  25. Pelaz, B. et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9, 6996–7008 (2015).

    CAS  Google Scholar 

  26. Koo, S. et al. Enhanced chemodynamic therapy by Cu–Fe peroxide nanoparticles: tumor microenvironment-mediated synergistic Fenton reaction. ACS Nano 16, 2535–2545 (2022).

    CAS  Google Scholar 

  27. Mittal, M. et al. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).

    CAS  Google Scholar 

  28. Kemp, K. Mesenchymal stem cell‐secreted superoxide dismutase promotes cerebellar neuronal survival. J. Neurochem. 114, 1569–1580 (2010).

    CAS  Google Scholar 

  29. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    CAS  Google Scholar 

  30. Adams, D. O. & Hamilton, T. A. The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283–318 (1984).

    CAS  Google Scholar 

  31. Richard, M. P. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2, 527–535 (2002).

    Google Scholar 

  32. Cifuentes-Rius, A. et al. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat. Nanotechnol. 16, 37–46 (2021).

    CAS  Google Scholar 

  33. Hilkens, C. & Isaacs, J. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now? Clin. Exp. Immunol. 172, 148–157 (2013).

    CAS  Google Scholar 

  34. Zhang, B. et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat. Biomed. Eng. 5, 1288–1305 (2021).

    Google Scholar 

  35. Peng, B. et al. Tuned cationic dendronized polymer: molecular scavenger for rheumatoid arthritis treatment. Angew. Chem. Int. Ed. 58, 4254–4258 (2019).

    CAS  Google Scholar 

  36. Inglis, J. J. et al. Collagen‐induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheumatol. 56, 4015–4023 (2007).

    Google Scholar 

  37. Ruiz-Fernández, C. et al. WISP-2 modulates the induction of inflammatory mediators and cartilage catabolism in chondrocytes. Lab. Invest. 102, 989–999 (2022).

    Google Scholar 

  38. Barbi, J. et al. Metabolic control of the Treg/Th17 axis. Immunol. Rev. 252, 52–77 (2013).

    Google Scholar 

  39. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    CAS  Google Scholar 

  40. Desreumaux, P. et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143, 1207–1217 (2012).

    CAS  Google Scholar 

  41. Reife, R. A. et al. SWR mice are resistant to collagen-induced arthritis but produce potentially arthritogenic antibodies. Arthritis Rheumatol. 34, 776–781 (1991).

    CAS  Google Scholar 

  42. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  Google Scholar 

  43. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    CAS  Google Scholar 

  44. Sakaguchi, S. et al. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    CAS  Google Scholar 

  45. Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007).

    CAS  Google Scholar 

  46. Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016).

    CAS  Google Scholar 

  47. Madaan, A. et al. A stepwise procedure for isolation of murine bone marrow and generation of dendritic cells. J. Biol. Methods 1, 1–6 (2014).

    Google Scholar 

  48. Brand, D. D., Latham, K. A. & Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269–1275 (2007).

    CAS  Google Scholar 

  49. Gao, X. H. et al. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. Br. J. Pharmacol. 172, 2991–3002 (2015).

    CAS  Google Scholar 

  50. Schmitz, N., Laverty, S., Kraus, V. B. & Aigner, T. Basic methods in histopathology of joint tissues. Osteoarthr. Cartil. 18, 113–116 (2010).

    Google Scholar 

  51. Kim, J. E. et al. Effect of self-assembled peptide-mesenchymal stem cell complex on the progression of osteoarthritis in a rat model. Int. J. Nanomed. 9, 141–157 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS-R006-D1) (S.K. and T.H.), a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (21A0504L1-11) (T.H.K., S.Y.J., S.Y., J.Y. and Y.J), and a National Research Foundation of Korea (NRF) grant funded by the Korean government (2019M3A9H1103651) (H.S.S., C.K. and B.-S.K.).

Author information

Authors and Affiliations

Authors

Contributions

S.K., H.S.S. and T.H.K. conceived and designed the project. S.K., H.S.S., T.H.K., S. Yang, S.Y.J., S. Ye. and S.H.K. performed the experiments and analysed the data. B.C., K.S.P., H.M.S., O.K.P., C.K., M.K., M.S., J.Y., D.K. and N.L. provided technical input on this project. S.K., H.S.S., T.H.K., D.K., B.-S.K., Y.J. and T.H. wrote the manuscript. B.-S.K., Y.J. and T.H. supervised the overall research.

Corresponding authors

Correspondence to Byung-Soo Kim, Youngmee Jung or Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Liangfang Zhang, Mauro Perretti, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–36, unprocessed gel images for supplementary figures, gating strategy for flow cytometry, and references.

Reporting Summary

Supplementary data 1

Sequences of primers for PCR analysis.

Supplementary data 2

Source data for Supplementary Figures

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Fig. 1k

Unprocessed western blots

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, S., Sohn, H.S., Kim, T.H. et al. Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model. Nat. Nanotechnol. 18, 1502–1514 (2023). https://doi.org/10.1038/s41565-023-01523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01523-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research