Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Entry and exit of extracellular vesicles to and from the blood circulation

Subjects

Abstract

Extracellular vesicles (EVs) are biological nanoparticles that promote intercellular communication by delivering bioactive cargo over short and long distances. Short-distance communication takes place in the interstitium, whereas long-distance communication is thought to require transport through the blood circulation to reach distal sites. Extracellular vesicle therapeutics are frequently injected systemically, and diagnostic approaches often rely on the detection of organ-derived EVs in the blood. However, the mechanisms by which EVs enter and exit the circulation are poorly understood. Here, the lymphatic system and transport across the endothelial barrier through paracellular and transcellular routes are discussed as potential pathways for EV entry to and exit from the blood circulatory system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential pathways of EV entry to and exit from the blood circulation.
Fig. 2: Mechanisms for cancer cell-derived EVs to cross the blood–brain barrier endothelium.
Fig. 3: Potential pathways of EV entry into the blood circulation through the lymphatic system.

Similar content being viewed by others

References

  1. Alberro, A., Iparraguirre, L., Fernandes, A. & Otaegui, D. Extracellular vesicles in blood: sources, effects, and applications. Int. J. Mol. Sci. 22, 8163 (2021).

    Article  CAS  Google Scholar 

  2. Witwer, K. W. & Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat. Rev. Mater. 6, 103–106 (2021).

    Article  CAS  Google Scholar 

  3. Busatto, S., Pham, A., Suh, A., Shapiro, S. & Wolfram, J. Organotropic drug delivery: synthetic nanoparticles and extracellular vesicles. Biomed. Microdevices 21, 46 (2019).

    Article  Google Scholar 

  4. Beetler, D. J. et al. Extracellular vesicles as personalized medicine. Mol. Aspects Med. 91, 101155 (2022).

    Article  Google Scholar 

  5. Walker, S. et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics 9, 8001–8017 (2019).

    Article  CAS  Google Scholar 

  6. Hu, T., Wolfram, J. & Srivastava, S. Extracellular vesicles in cancer detection: hopes and hypes. Trends Cancer 7, 122–133 (2020).

    Article  Google Scholar 

  7. Iannotta, D., Yang, M., Celia, C., Di Marzio, L. & Wolfram, J. Extracellular vesicle therapeutics from plasma and adipose tissue. Nano Today 39, 101159 (2021).

    Article  CAS  Google Scholar 

  8. Ghodasara, A., Raza, A., Wolfram, J., Salomon, C. & Popat, A. Clinical translation of extracellular vesicles. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202301010 (2023).

  9. Dumas, S. J. et al. Phenotypic diversity and metabolic specialization of renal endothelial cells. Nat. Rev. Nephrol. 17, 441–464 (2021).

    Article  CAS  Google Scholar 

  10. Jourde-Chiche, N. et al. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol. 15, 87–108 (2019).

    Article  Google Scholar 

  11. Wolfram, J. & Ferrari, M. Clinical cancer nanomedicine. Nano Today 25, 85–89 (2019).

    Article  CAS  Google Scholar 

  12. Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    Article  CAS  Google Scholar 

  13. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  14. Lessey-Morillon, E. C. et al. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J. Immunol. 192, 3390–3398 (2014).

    Article  CAS  Google Scholar 

  15. Zeng, Z. et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018).

    Article  CAS  Google Scholar 

  16. Treps, L., Perret, R., Edmond, S., Ricard, D. & Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J. Extracell. Vesicles 6, 1359479 (2017).

    Article  Google Scholar 

  17. Tominaga, N. et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat. Commun. 6, 6716 (2015).

    Article  CAS  Google Scholar 

  18. De La Cruz, E. M. How cofilin severs an actin filament. Biophys. Rev. 1, 51–59 (2009).

    Article  Google Scholar 

  19. Chatterjee, V. et al. Endothelial microvesicles carrying Src-rich cargo impair adherens junction integrity and cytoskeleton homeostasis. Cardiovasc. Res. 116, 1525–1538 (2020).

    Article  CAS  Google Scholar 

  20. Sperandio, M., Gleissner, C. A. & Ley, K. Glycosylation in immune cell trafficking. Immunol. Rev. 230, 97–113 (2009).

    Article  CAS  Google Scholar 

  21. Goncalves, J. P., Deliwala, V. J., Kolarich, D., Souza-Fonseca-Guimaraes, F. & Wolfram, J. The cancer cell-derived extracellular vesicle glycocode in immunoevasion. Trends Immunol. 43, 864–867 (2022).

    Article  CAS  Google Scholar 

  22. Yang, M. et al. Extracellular vesicle glucose transporter-1 and glycan features in monocyte-endothelial inflammatory interactions. Nanomedicine 42, 102515 (2022).

    Article  CAS  Google Scholar 

  23. Walker, S. A. et al. Glycan node analysis of plasma-derived extracellular vesicles. Cells 9, 1946 (2020).

    Article  CAS  Google Scholar 

  24. Williams, C. et al. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J. Extracell. Vesicles 7, 1442985 (2018).

    Article  Google Scholar 

  25. Pendiuk Goncalves, J. et al. Glycan node analysis detects varying glycosaminoglycan levels in melanoma-derived extracellular vesicles. Int. J. Mol. Sci. 9, 1946 (2023).

    Google Scholar 

  26. Li, Y. et al. EV-origin: enumerating the tissue-cellular origin of circulating extracellular vesicles using exLR profile. Comput Struct. Biotechnol. J. 18, 2851–2859 (2020).

    Article  CAS  Google Scholar 

  27. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article  CAS  Google Scholar 

  28. Trzewik, J., Mallipattu, S. K., Artmann, G. M., Delano, F. A. & Schmid-Schönbein, G. W. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001).

    Article  CAS  Google Scholar 

  29. Breslin, J. W. et al. Lymphatic vessel network structure and physiology. Compr. Physiol. 9, 207–299 (2018).

    Article  Google Scholar 

  30. Liu, D. et al. CD97 promotion of gastric carcinoma lymphatic metastasis is exosome dependent. Gastric Cancer 19, 754–766 (2016).

    Article  CAS  Google Scholar 

  31. Shimizu, A. et al. Exosomal CD47 plays an essential role in immune evasion in ovarian cancer. Mol. Cancer Res. 19, 1583–1595 (2021).

    Article  CAS  Google Scholar 

  32. Tessandier, N. et al. Platelets disseminate extracellular vesicles in lymph in rheumatoid arthritis. Arterioscler. Thromb. Vasc. Biol. 40, 929–942 (2020).

    Article  CAS  Google Scholar 

  33. Welsh, J. D., Kahn, M. L. & Sweet, D. T. Lymphovenous hemostasis and the role of platelets in regulating lymphatic flow and lymphatic vessel maturation. Blood 128, 1169–1173 (2016).

    Article  CAS  Google Scholar 

  34. Mehta, D. & Malik, A. B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367 (2006).

    Article  CAS  Google Scholar 

  35. Fernández-Hernando, C. et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 10, 48–54 (2009).

    Article  Google Scholar 

  36. Morad, G. et al. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis. ACS Nano 13, 13853–13865 (2019).

    Article  CAS  Google Scholar 

  37. Chen, C. C. et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell. Mol. Bioeng. 9, 509–529 (2016).

    Article  CAS  Google Scholar 

  38. Gonda, A., Kabagwira, J., Senthil, G. N. & Wall, N. R. Internalization of exosomes through receptor-mediated endocytosis. Mol. Cancer Res. 17, 337–347 (2019).

    Article  CAS  Google Scholar 

  39. Mulcahy, L. A., Pink, R. C. & Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Article  Google Scholar 

  40. Feng, Y. et al. The blocking of integrin-mediated interactions with maternal endothelial cells reversed the endothelial cell dysfunction induced by EVs, derived from preeclamptic placentae. Int. J. Mol. Sci. 23, 13115 (2022).

    Article  CAS  Google Scholar 

  41. Fomina, A. F., Deerinck, T. J., Ellisman, M. H. & Cahalan, M. D. Regulation of membrane trafficking and subcellular organization of endocytic compartments revealed with FM1-43 in resting and activated human T cells. Exp. Cell. Res. 291, 150–166 (2003).

    Article  CAS  Google Scholar 

  42. Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    Article  CAS  Google Scholar 

  43. Wei, X. et al. Surface phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS ONE 11, e0147360 (2016).

    Article  Google Scholar 

  44. He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).

    Article  CAS  Google Scholar 

  45. Lu, F., Wu, S. H., Hung, Y. & Mou, C. Y. Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small 5, 1408–1413 (2009).

    Article  CAS  Google Scholar 

  46. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  Google Scholar 

  47. Gould, S. J. & Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389 (2013).

    Article  Google Scholar 

  48. Sousa de Almeida, M. et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 50, 5397–5434 (2021).

    Article  CAS  Google Scholar 

  49. Nazarenko, I. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70, 1668–1678 (2010).

    Article  CAS  Google Scholar 

  50. Yuan, D. et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1–12 (2017).

    Article  CAS  Google Scholar 

  51. Joshi, B. S. & Zuhorn, I. S. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood–brain barrier model. Eur. J. Neurosci. 53, 706–719 (2021).

    Article  CAS  Google Scholar 

  52. Ihrcke, N. S., Wrenshall, L. E., Lindman, B. J. & Platt, J. L. Role of heparan sulfate in immune system-blood vessel interactions. Immunol. Today 14, 500–505 (1993).

    Article  CAS  Google Scholar 

  53. Chanda, D. et al. Fibronectin on the surface of extracellular vesicles mediates fibroblast invasion. Am. J. Respir. Cell Mol. Biol. 60, 279–288 (2019).

    Article  CAS  Google Scholar 

  54. Purushothaman, A. et al. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J. Biol. Chem. 291, 1652–1663 (2016).

    Article  CAS  Google Scholar 

  55. Deng, Z. et al. Tumor cell cross talk with tumor-associated leukocytes leads to induction of tumor exosomal fibronectin and promotes tumor progression. Am. J. Pathol. 180, 390–398 (2012).

    Article  CAS  Google Scholar 

  56. Mertens, G., Cassiman, J. J., Van den Berghe, H., Vermylen, J. & David, G. Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J. Biol. Chem. 267, 20435–20443 (1992).

    Article  CAS  Google Scholar 

  57. Matsumoto, J. et al. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood–brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol. Commun. 5, 71 (2017).

    Article  Google Scholar 

  58. Banks, W. A. et al. Transport of extracellular vesicles across the blood–brain barrier: brain pharmacokinetics and effects of inflammation. Int. J. Mol. Sci. 21, 4407 (2020).

    Article  CAS  Google Scholar 

  59. Hervé, F., Ghinea, N. & Scherrmann, J.-M. CNS delivery via adsorptive transcytosis. AAPS J. 10, 455–472 (2008).

    Article  Google Scholar 

  60. Banks, W. A., Kastin, A. J., Brennan, J. M. & Vallance, K. L. Adsorptive endocytosis of HIV-1gp120 by blood–brain barrier is enhanced by lipopolysaccharide. Exp. Neurol. 156, 165–171 (1999).

    Article  CAS  Google Scholar 

  61. Wurdinger, T. et al. Extracellular vesicles and their convergence with viral pathways. Adv. Virol. 2012, 767694 (2012).

    Article  Google Scholar 

  62. Banks, W. A. et al. Transport of human immunodeficiency virus type 1 pseudoviruses across the blood–brain barrier: role of envelope proteins and adsorptive endocytosis. J. Virol. 75, 4681–4691 (2001).

    Article  CAS  Google Scholar 

  63. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  Google Scholar 

  64. Andreone, B. J. et al. Blood–brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594.e5 (2017).

    Article  CAS  Google Scholar 

  65. Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).

    Article  CAS  Google Scholar 

  66. Busatto, S. et al. Lipoprotein-based drug delivery. Adv. Drug Deliv. Rev. 159, 377–390 (2020).

    Article  CAS  Google Scholar 

  67. Simonsen, J. B. What are we looking at? Extracellular vesicles, lipoproteins, or both. Circ. Res. 121, 920–922 (2017).

    Article  CAS  Google Scholar 

  68. Toth, E. A. et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).

    Article  CAS  Google Scholar 

  69. Sodar, B. W. et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci. Rep. 6, 24316 (2016).

    Article  CAS  Google Scholar 

  70. Busatto, S. et al. Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. J. Nanobiotechnol. 18, 162 (2020).

    Article  CAS  Google Scholar 

  71. Busatto, S. et al. Considerations for extracellular vesicle and lipoprotein interactions in cell culture assays. J. Extracell. Vesicles 11, e12202 (2022).

    Article  CAS  Google Scholar 

  72. Lozano-Andrés, E. et al. Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis. Preprint at https://doi.org/10.1101/2022.08.31.506022 (2022).

  73. Pham, M.-T. et al. Endosomal egress and intercellular transmission of hepatic ApoE-containing lipoproteins and its exploitation by the hepatitis C virus. PLoS Pathog. 19, e1011052 (2023).

    Article  CAS  Google Scholar 

  74. Broad, K. et al. Unraveling multilayered extracellular vesicles: speculation on cause. J. Extracell. Vesicles 12, e12309 (2023).

    Article  Google Scholar 

  75. Phinney, D. G. et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 6, 8472 (2015).

    Article  CAS  Google Scholar 

  76. Dixson, A. C., Dawson, T. R., Di Vizio, D. & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 4, 454–476 (2023).

    Article  Google Scholar 

  77. Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell … and more. Endocr. Rev. 34, 658–690 (2013).

    Article  CAS  Google Scholar 

  78. Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  Google Scholar 

  79. Xie, Y., Bagby, T. R., Cohen, M. S. & Forrest, M. L. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin. Drug Deliv. 6, 785–792 (2009).

    Article  CAS  Google Scholar 

  80. Parker, R. J., Hartman, K. D. & Sieber, S. M. Lymphatic absorption and tissue disposition of liposome-entrapped [14C]adriamycin following intraperitoneal administration to rats. Cancer Res. 41, 1311–1317 (1981).

    CAS  Google Scholar 

  81. Fujimoto, Y., Okuhata, Y., Tyngi, S., Namba, Y. & Oku, N. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol. Pharm. Bull. 23, 97–100 (2000).

    Article  CAS  Google Scholar 

  82. Kang, M., Jordan, V., Blenkiron, C. & Chamley, L. W. Biodistribution of extracellular vesicles following administration into animals: a systematic review. J. Extracell. Vesicles 10, e12085 (2021).

    Article  Google Scholar 

  83. Amruta, A., Iannotta, D., Cheetham, S. W., Lammers, T. & Wolfram, J. Vasculature organotropism in drug delivery. Adv. Drug Deliv. Rev. 201, 115054 (2023).

    Article  CAS  Google Scholar 

  84. Li, C. et al. The role of exosomal miRNAs in cancer. J. Transl. Med. 20, 6 (2022).

    Article  CAS  Google Scholar 

  85. Crowl, J. T., Gray, E. E., Pestal, K., Volkman, H. E. & Stetson, D. B. Intracellular nucleic acid detection in autoimmunity. Annu. Rev. Immunol. 35, 313–336 (2017).

    Article  CAS  Google Scholar 

  86. Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 31, 62–76 (2020).

    Article  CAS  Google Scholar 

  87. Lei, K. et al. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial funding for this work was provided by The University of Queensland, Australia (J.W.), the National Institute on Aging, National Institutes of Health, United States under award number R01AG076537 (J.W.) and The Medical Research Future Fund, Australia under award number MRF2019485 (J.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the organizations and funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Wolfram.

Ethics declarations

Competing interests

The authors declare no competing interests. J.W. is listed on an extracellular vesicle grant from Ionis Pharmaceuticals, but the article topic is not a primary focus of the grant and the grant funding did not contribute to this work.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iannotta, D., A, A., Kijas, A.W. et al. Entry and exit of extracellular vesicles to and from the blood circulation. Nat. Nanotechnol. 19, 13–20 (2024). https://doi.org/10.1038/s41565-023-01522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01522-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing