Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Abstract

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g−1 at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphological and structural analyses showing the robust outside-in structures of LAZO@LNO.
Fig. 2: Electrochemical behaviour showing the significantly enhanced Li-ion transport dynamics for LAZO@LNO-based ASSLBs.
Fig. 3: X-ray diffraction and PFIB-SEM analysis showing the electro-chemo-mechanical evolution of the composite cathodes at different stages.
Fig. 4: X-ray absorption spectroscopy (XAS) analysis showing the evolution of the LNO, LAZO@LNO and LPSC structure in the composite cathodes at different stages.
Fig. 5: XPS and Raman analysis showing the evolution of the LPSC surface composition in the composite cathodes at different stages.
Fig. 6: Superior electrochemical performance of LAZO@LNO- over LNO-based ASSLBs.

Similar content being viewed by others

Data availability

All the data generated and analysed in this study are included in the paper and Supplementary Information. The data that support the plots within this paper are available from the corresponding authors upon reasonable request.

References

  1. Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    CAS  ADS  Google Scholar 

  2. Wang, L., Chen, B., Ma, J., Cui, G. & Chen, L. Reviving lithium cobalt oxide-based lithium secondary batteries—toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018).

    CAS  PubMed  Google Scholar 

  3. Ryu, H. H., Sun, H. H., Myung, S. T., Yoon, C. S. & Sun, Y. K. Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy Environ. Sci. 14, 844–852 (2021).

    CAS  Google Scholar 

  4. Zeng, A. et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Voronina, N., Sun, Y. K. & Myung, S. T. Co-free layered cathode materials for high energy density lithium-ion batteries. ACS Energy Lett. 5, 1814–1824 (2020).

    CAS  Google Scholar 

  6. Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and back again—the journey of LiNiO2 as a cathode active material. Angew. Chem. Int. Ed. 58, 10434–10458 (2019).

    CAS  Google Scholar 

  7. Yu, L. et al. High nickel and no cobalt—the pursuit of next-generation layered oxide cathodes. ACS Appl. Mater. Interfaces 14, 23056–23065 (2022).

    CAS  Google Scholar 

  8. Wang, C. Y. et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4, 2013–2026 (2021).

    CAS  Google Scholar 

  9. Wang, M. J., Kazyak, E., Dasgupta, N. P. & Sakamoto, J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021).

    CAS  Google Scholar 

  10. Wang, C. H. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021).

    CAS  Google Scholar 

  11. Zhou, L. D. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    CAS  ADS  Google Scholar 

  12. Wang, C. et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 7, eabh1896 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Zhou, L. D. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    CAS  Google Scholar 

  14. Yin, Y. C. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616, 77–83 (2023).

    CAS  PubMed  ADS  Google Scholar 

  15. Deng, S. X. et al. Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries. ACS Energy Lett. 5, 1243–1251 (2020).

    CAS  Google Scholar 

  16. Wang, L. L. et al. Bidirectionally compatible buffering layer enables highly stable and conductive interface for 4.5 V sulfide-based all-solid-state lithium batteries. Adv. Energy Mater. 11, 2100881 (2021).

    CAS  Google Scholar 

  17. Culver, S. P., Koerver, R., Zeier, W. G. & Janek, J. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries. Adv. Energy Mater. 9, 1900626 (2019).

    Google Scholar 

  18. Ma, Y. et al. Cycling performance and limitations of LiNiO2 in solid-state batteries. ACS Energy Lett. 6, 3020–3028 (2021).

    MathSciNet  CAS  Google Scholar 

  19. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    CAS  ADS  Google Scholar 

  20. Zhang, W. et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

    CAS  PubMed  Google Scholar 

  21. Cao, D. et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating. Nano Lett. 20, 1483–1490 (2020).

    CAS  PubMed  ADS  Google Scholar 

  22. Wang, Y. et al. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2, 537–545 (2022).

    Google Scholar 

  23. Zhao, Y., Zheng, K. & Sun, X. L. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2, 2583–2604 (2018).

    CAS  Google Scholar 

  24. Chen, L. et al. Mechanism for Al2O3 atomic layer deposition on LiMn2O4 from in situ measurements and ab initio calculations. Chem 4, 2418–2435 (2018).

    CAS  Google Scholar 

  25. Warburton, R. E., Young, M. J., Letourneau, S., Elam, J. W. & Greeley, J. Descriptor-based analysis of atomic layer deposition mechanisms on spinel LiMn2O4 lithium-ion battery cathodes. Chem. Mater. 32, 1794–1806 (2020).

    CAS  Google Scholar 

  26. Wang, L. et al. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 6, 1900355 (2019).

    Google Scholar 

  27. Huang, H. et al. Unusual double ligand holes as catalytic active sites in LiNiO2. Nat. Commun. 14, 2112 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Xu, J. et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 31677–31683 (2016).

    CAS  PubMed  Google Scholar 

  29. Li, N. et al. Unraveling the cationic and anionic redox reactions in a conventional layered oxide cathode. ACS Energy Lett. 4, 2836–2842 (2019).

    CAS  Google Scholar 

  30. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2018).

    CAS  PubMed  ADS  Google Scholar 

  31. Guo, H. et al. Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nat. Commun. 9, 43 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  33. Mu, L. et al. Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020).

    CAS  PubMed  Google Scholar 

  34. Green, R. J., Haverkort, M. W. & Sawatzky, G. A. Bond disproportionation and dynamical charge fluctuations in the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016).

    ADS  Google Scholar 

  35. Agrestini, S. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 100, 014443 (2019).

    CAS  ADS  Google Scholar 

  36. Han, M. et al. Eliminating transition metal migration and anionic redox to understand voltage hysteresis of lithium-rich layered oxides. Adv. Energy Mater. 10, 1903634 (2020).

    CAS  Google Scholar 

  37. Zhang, Y. B. et al. Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH. Energy Storage Mater. 41, 505–514 (2021).

    Google Scholar 

  38. Kim, A. Y. et al. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries. Chem. Mater. 31, 9664–9672 (2019).

    CAS  Google Scholar 

  39. Levartovsky, Y. et al. Enhancement of structural, electrochemical, and thermal properties of Ni‐rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li‐ion batteries by Al and Ti doping. Batter. Supercaps 4, 221–231 (2020).

    Google Scholar 

  40. Fang, R., Liu, Y., Li, Y., Manthiram, A. & Goodenough, J. B. Achieving stable all-solid-state lithium-metal batteries by tuning the cathode–electrolyte interface and ionic/electronic transport within the cathode. Mater. Today 64, 52–60 (2023).

    CAS  Google Scholar 

  41. Kim, U. H. et al. Microstructure- and interface-modified Ni-rich cathode for high-energy-density all-solid-state lithium batteries. ACS Energy Lett. 8, 809–817 (2023).

    CAS  ADS  Google Scholar 

  42. Zhao, F. P. et al. Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Mater. 33, 139–146 (2020).

    Google Scholar 

  43. Ma, Y. et al. Advanced nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2111829 (2022).

    CAS  Google Scholar 

  44. Wang, P. et al. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. 29, 1900950 (2019).

    Google Scholar 

  45. Tallman, K. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and extended cycling effects using operando X-ray absorption spectroscopy. J. Phys. Chem. C. 125, 58–73 (2020).

    Google Scholar 

  46. Zak, J. J., Kim, S. S., Laskowski, F. A. L. & See, K. A. An exploration of sulfur redox in lithium battery cathodes. J. Am. Chem. Soc. 144, 10119–10132 (2022).

    CAS  PubMed  Google Scholar 

  47. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    CAS  ADS  Google Scholar 

  48. Deng, S. X. et al. Insight into cathode surface to boost the performance of solid-state batteries. Energy Storage Mater. 35, 661–668 (2021).

    Google Scholar 

  49. Wu, Y. Q. et al. Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Energy Environ. Sci. 15, 3470–3482 (2022).

    CAS  Google Scholar 

  50. Strauss, F. et al. Li2ZrO3-coated NCM622 for application in inorganic solid-state batteries: role of surface carbonates in the cycling performance. ACS Appl. Mater. Interfaces 12, 57146–57154 (2020).

    CAS  PubMed  Google Scholar 

  51. Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    CAS  Google Scholar 

  52. Gao, X. et al. Solid-state lithium battery cathodes operating at low pressures. Joule 6, 636–646 (2022).

    CAS  Google Scholar 

  53. Wu, F., Maier, J. & Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020).

    CAS  PubMed  Google Scholar 

  54. Luo, S. et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Wang, L. et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. B 268, 334–340 (2010).

    CAS  ADS  Google Scholar 

  57. Cowan, R. D. The Theory of Atomic Structure and Spectra (University of California Press, 1981).

  58. Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US–Israel Energy Center programme managed by the US–Israel Binational Industrial Research and Development (BIRD) Foundation. In addition, the project is supported by Champion Motors Ltd, the Science and Engineering Research Board for Ramanujan fellowship (RJN/2020/000075, A.M.) and the Ministry of Science and Technology in Taiwan (MOST 110-2112-M-A49-002-MY3, C.-Y.K.). We acknowledge the support from the Max Planck-POSTECH/Hsinchu Center for Complex Phase Materials.

Author information

Authors and Affiliations

Authors

Contributions

L.W., A.M. and M.N. conceived the idea. L.W., A.M. and Z.H. synthesized the materials. L.W., A.M. and R.Y. performed the ALD coating. L.W. and A.M. performed the X-ray diffraction, SEM, STEM and electrochemical measurements. L.W., S.C. and B.L. performed the PFIB measurements. C.-Y.K. and Z.H. carried out the XAS measurements and calculations. L.W., S.H.A., H.A. and D.N. performed the operando Raman measurements. L.W., A.S. and S.T. performed the XPS measurements. C.-Y.K., Z.H., T.-S.C., H.-J.L., J.-F.L. and C.-T.C. helped to analyse the XAS data. A.A.D. and J.W.D. performed the cost estimation of the ASSLB production process including ALD. D.S., X.G., S.B. and P.G.B. provided valuable suggestions to improve this project. L.W., M.N. and D.A. wrote the paper with critical inputs from all other authors. All authors edited and approved the manuscript.

Corresponding authors

Correspondence to Zhiwei Hu, Doron Aurbach or Malachi Noked.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Hong Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–3, Notes 1–10 and refs. 1–38.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Mukherjee, A., Kuo, CY. et al. High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures. Nat. Nanotechnol. 19, 208–218 (2024). https://doi.org/10.1038/s41565-023-01519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01519-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing