Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and predicting the response to immunotherapy

Abstract

In vivo quantitative assessment of oxyhaemoglobin saturation (sO2) status in tumour-associated vessels could provide insights into cancer metabolism and behaviour. Here we develop a non-invasive in vivo sO2 imaging technique to visualize the sO2 levels of healthy and tumour tissue based on photoluminescence bioimaging in the near-infrared IIb (NIR-IIb; 1,500–1,700 nm) window. Real-time dynamic sO2 imaging with a high frame rate (33 Hz) reveals the cerebral arteries and veins through intact mouse scalp/skull, and this imaging is consistent with the haemodynamic analysis results. Utilizing our non-invasive sO2 imaging, the tumour-associated-vessel sO2 levels of various cancer models are evaluated. A positive correlation between the tumour-associated-vessel sO2 levels and the basal oxygen consumption rate of corresponding cancer cells at the early stages of tumorigenesis suggests that cancer cells modulate the tumour metabolic microenvironment. We also find that a positive therapeutic response to the checkpoint blockade cancer immunotherapy could lead to a dramatic decrease of the tumour-associated-vessel sO2 levels. Two-plex dynamic NIR-IIb imaging can be used to simultaneously observe tumour-vessel sO2 and PD-L1, allowing a more accurate prediction of immunotherapy response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NIR-IIb luminescent pEr nanoprobe for assessing blood oxygen saturation.
Fig. 2: In vivo non-invasive dynamic sO2 imaging of mouse cerebral vasculature.
Fig. 3: In vivo sO2 imaging and TAV-sO2 assessment of different tumour models.
Fig. 4: In vivo two-plex tumour imaging in the same NIR-IIb window utilizing pEr and ErNPs.

Similar content being viewed by others

Data availability

Source data are available for Figs. 14. Other data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

The code that has been used for this work is available from the corresponding authors upon request.

References

  1. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article  Google Scholar 

  2. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  Google Scholar 

  3. Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    Article  CAS  Google Scholar 

  4. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article  CAS  Google Scholar 

  5. Hu, J. et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 (2013).

    Article  CAS  Google Scholar 

  6. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article  CAS  Google Scholar 

  7. Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016).

    Article  CAS  Google Scholar 

  8. Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    Article  CAS  Google Scholar 

  9. Gui, D. Y. et al. Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin. Cell Metab. 24, 716–727 (2016).

    Article  CAS  Google Scholar 

  10. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  Google Scholar 

  11. Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    Article  CAS  Google Scholar 

  12. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  CAS  Google Scholar 

  13. Rofstad, E. K., DeMuth, P., Fenton, B. M. & Sutherland, R. M. 31P nuclear magnetic resonance spectroscopy studies of tumor energy metabolism and its relationship to intracapillary oxyhemoglobin saturation status and tumor hypoxia. Cancer Res. 48, 5440–5446 (1988).

    CAS  Google Scholar 

  14. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  Google Scholar 

  15. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  Google Scholar 

  16. Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).

    Article  CAS  Google Scholar 

  17. Li, M., Tang, Y. & Yao, J. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics 10, 65–73 (2018).

    Article  Google Scholar 

  18. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  19. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  CAS  Google Scholar 

  20. Gu, Y. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics 13, 525–531 (2019).

    Article  CAS  Google Scholar 

  21. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  Google Scholar 

  22. Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    Article  CAS  Google Scholar 

  23. Chang, B. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2022).

    Article  CAS  Google Scholar 

  24. Diao, S. et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).

    Article  CAS  Google Scholar 

  25. Zhong, Y. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

    Article  CAS  Google Scholar 

  26. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8, 723–730 (2014).

    Article  CAS  Google Scholar 

  27. Zhang, X.-D. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28, 6872–6879 (2016).

    Article  CAS  Google Scholar 

  28. Johnson, N. J. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).

    Article  CAS  Google Scholar 

  29. He, S. et al. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT contrast by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles. Nano Lett. 17, 4873–4880 (2017).

    Article  CAS  Google Scholar 

  30. Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 13, 1281–1294 (2020).

    Article  CAS  Google Scholar 

  31. Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8, 737 (2017).

    Article  Google Scholar 

  32. Wang, F. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 16, 545–552 (2019).

    Article  Google Scholar 

  33. Mendrik, A. et al. Automatic segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans. Med. Phys. 37, 2956–2966 (2010).

    Article  Google Scholar 

  34. Zhou, H. et al. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J. Am. Chem. Soc. 143, 1846–1853 (2021).

    Article  CAS  Google Scholar 

  35. Höckel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93, 266–276 (2001).

    Article  Google Scholar 

  36. Moulder, J. E. & Rockwell, S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 5, 313–341 (1987).

    Article  CAS  Google Scholar 

  37. Yao, J., Maslov, K. I., Zhang, Y., Xia, Y. & Wang, L. V. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Opt. 16, 1–12 (2011).

    Article  Google Scholar 

  38. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  Google Scholar 

  39. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  CAS  Google Scholar 

  40. Mao, Y., Keller, E. T., Garfield, D. H., Shen, K. & Wang, J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 32, 303–315 (2013).

    Article  Google Scholar 

  41. Reina-Campos, M., Moscat, J. & Diaz-Meco, M. Metabolism shapes the tumor microenvironment. Curr. Opin. Cell Biol. 48, 47–53 (2017).

    Article  CAS  Google Scholar 

  42. Arneth, B. Tumor microenvironment. Medicina 56, 15 (2020).

    Article  Google Scholar 

  43. Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).

    Article  CAS  Google Scholar 

  44. Xu, J. et al. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: mechanism, design and application for bioimaging. Coord. Chem. Rev. 381, 104–134 (2019).

    Article  CAS  Google Scholar 

  45. Wang, K. et al. Fluorescence image-guided tumour surgery. Nat. Rev. Bioeng. 1, 161–179 (2023).

    Article  Google Scholar 

  46. Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).

    Article  Google Scholar 

  47. Liu, H.-W. et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 47, 7140–7180 (2018).

    Article  CAS  Google Scholar 

  48. Baugh, L. M. et al. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease. Nat. Biomed. Eng. 1, 914–924 (2017).

    Article  CAS  Google Scholar 

  49. Mai, H.-X. et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).

    Article  CAS  Google Scholar 

  50. Liu, Y. et al. Fluorination enhances NIR-II fluorescence of polymer dots for quantitative brain tumor imaging. Angew. Chem. Int. Ed. 59, 21049–21057 (2020).

    Article  CAS  Google Scholar 

  51. Ramos-Soto, O. et al. An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Comput. Methods Programs Biomed. 201, 105949 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (number 2021YFA1200900 for C.C. and Y.Z; number 2022YFA1207300 for Y.Z.) and the China Postdoctoral Science Foundation (number 2021M690804 for C.W.). We thank L. Zhou and S. Yu, HORIBA (China), for assistance with spectra and quantum yield measurement. We also thank Z. Ma for assistance with principal-component analysis.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and Z.F. conceived and designed the experiments. Z.F., C.W., J.Y., Y.J., C.X., Z.S. and Q.Z. performed the experiments. Z.F., C.W., J.Y., Z.W., X.D., C.C., Z.H. and Y.Z. analysed the data and wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Chunying Chen, Zhiyuan Hu or Yeteng Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Hak Soo Choi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19.

Reporting Summary

Supplementary Video 1

Real-time NIR-IIb in vivo dynamic sO2 imaging (650:980 model) of mouse cerebral blood flow in a BALB/c mouse brain. Total video time, 15 s; frame rate, 33 Hz; playing at 1× speed.

Supplementary Video 2

Real-time NIR-IIb in vivo dynamic sO2 imaging (650:980 model) of a 4T1 tumour mouse. Total video time, 24 s; frame rate, 30 Hz; playing at 2× speed.

Supplementary Video 3

Two-plex NIR-IIb in vivo dynamic co-localization imaging of a CT26 tumour mouse at 24 h post-treatment of ErNPs-aPDL1. The sO2 imaging was performed in the 650:808 model. Total video time, 10 s; frame rate, 10 Hz; playing at 2× speed.

Source data

Source Data Fig. 1

Statistical and image Source Data

Source Data Fig. 2

Statistical and image Source Data

Source Data Fig. 3

Statistical and image Source Data

Source Data Fig. 4

Statistical and image Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Wang, C., Yang, J. et al. Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and predicting the response to immunotherapy. Nat. Nanotechnol. 19, 124–130 (2024). https://doi.org/10.1038/s41565-023-01501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01501-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing