Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics

Abstract

Recent advances in two-dimensional semiconductors, particularly molybdenum disulfide (MoS2), have enabled the fabrication of flexible electronic devices with outstanding mechanical flexibility. Previous approaches typically involved the synthesis of MoS2 on a rigid substrate at a high temperature followed by the transfer to a flexible substrate onto which the device is fabricated. A recurring drawback with this methodology is the fact that flexible substrates have a lower melting temperature than the MoS2 growth process, and that the transfer process degrades the electronic properties of MoS2. Here we report a strategy for directly synthesizing high-quality and high-crystallinity MoS2 monolayers on polymers and ultrathin glass substrates (thickness ~30 µm) at ~150 °C using metal–organic chemical vapour deposition. By avoiding the transfer process, the MoS2 quality is preserved. On flexible field-effect transistors, we achieve a mobility of 9.1 cm2 V−1 s−1 and a positive threshold voltage of +5 V, which is essential for reducing device power consumption. Moreover, under bending conditions, our logic circuits exhibit stable operation while phototransistors can detect light over a wide range of wavelengths from 405 nm to 904 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wafer-scale MoS2 synthesized on parylene C and UTG at a low temperature.
Fig. 2: Uniformity of LT-MoS2 and growth mechanism investigated using DFT.
Fig. 3: Comparison of LT-MoS2 and HT-MoS2.
Fig. 4: MoS2-based logic circuits on UTG.
Fig. 5: LT-MoS2-based phototransistor on UTG.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Choi, M. et al. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 6, eabb5898 (2020).

    CAS  Google Scholar 

  2. Biggs, J. et al. A natively flexible 32-bit ARM microprocessor. Nature 595, 532–536 (2021).

    CAS  Google Scholar 

  3. Kireev, D. et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021).

    CAS  Google Scholar 

  4. Kang, M. et al. Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Sci. Adv. 8, eabm6693 (2022).

    CAS  Google Scholar 

  5. Daus, A. et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021).

    CAS  Google Scholar 

  6. Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).

    Google Scholar 

  7. Kireev, D. et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).

    CAS  Google Scholar 

  8. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    CAS  Google Scholar 

  9. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    CAS  Google Scholar 

  10. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    CAS  Google Scholar 

  11. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Google Scholar 

  12. Aljarb, A. et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19, 1300–1306 (2020).

    CAS  Google Scholar 

  13. Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    CAS  Google Scholar 

  14. Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    CAS  Google Scholar 

  15. Choi, A. et al. Residue-free photolithographic patterning of graphene. Chem. Eng. J. 429, 132504 (2022).

    CAS  Google Scholar 

  16. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    CAS  Google Scholar 

  17. Poddar, P. K. et al. Resist-free lithography for monolayer transition metal dichalcogenides. Nano Lett. 22, 726–732 (2022).

    CAS  Google Scholar 

  18. Qin, B. et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun. 14, 304 (2023).

    CAS  Google Scholar 

  19. Zhang, K. et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nat. Nanotechnol. 18, 448–455 (2023).

    CAS  Google Scholar 

  20. Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).

    CAS  Google Scholar 

  21. Ahn, C. et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 27, 5223–5229 (2015).

    CAS  Google Scholar 

  22. Lim, Y. R. et al. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 28, 5025–5030 (2016).

    CAS  Google Scholar 

  23. Gong, Y. et al. Direct growth of MoS2 single crystals on polyimide substrates. 2D Mater. 4, 021028 (2017).

  24. Hwangbo, S., Hu, L., Hoang, A. T., Choi, J. Y. & Ahn, J.-H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).

    CAS  Google Scholar 

  25. Kozhakhmetov, A. et al. Scalable BEOL compatible 2D tungsten diselenide. 2D Mater. 7, 015029 (2019).

    Google Scholar 

  26. Park, J.-H. et al. Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 5, 2000720 (2021).

    CAS  Google Scholar 

  27. Tang, A. et al. Toward low-temperature solid-source synthesis of monolayer MoS2. ACS Appl. Mater. Inter. 13, 41866–41874 (2021).

    CAS  Google Scholar 

  28. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    CAS  Google Scholar 

  29. Zhang, X. et al. Influence of carbon in metalorganic chemical vapor deposition of few-layer WSe2 thin films. J. Electron. Mater. 45, 6273–6279 (2016).

    CAS  Google Scholar 

  30. Zhang, X. et al. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 18, 1049–1056 (2018).

    CAS  Google Scholar 

  31. Hoang, A. T. et al. Epitaxial growth of wafer-scale molybdenum disulfide/graphene heterostructures by metal–organic vapor-phase epitaxy and their application in photodetectors. ACS Appl. Mater. Inter. 12, 44335–44344 (2020).

    CAS  Google Scholar 

  32. Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    CAS  Google Scholar 

  33. Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    CAS  Google Scholar 

  34. Xiang, Y. et al. Monolayer MoS2 on sapphire: an azimuthal reflection high-energy electron diffraction perspective. 2D Mater. 8, 025003 (2021).

  35. Jin, Y. et al. A van der Waals homojunction: ideal p–n diode behavior in MoSe2. Adv. Mater. 27, 5534–5540 (2015).

    CAS  Google Scholar 

  36. Gao, J. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735–9743 (2016).

    CAS  Google Scholar 

  37. Qin, Z. et al. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 13, 10768–10775 (2019).

    CAS  Google Scholar 

  38. Gao, H. et al. Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 20, 4095–4101 (2020).

    CAS  Google Scholar 

  39. Nasr, J. R. et al. Low-power and ultra-thin MoS2 photodetectors on glass. ACS Nano 14, 15440–15449 (2020).

    CAS  Google Scholar 

  40. Shum, L. G. S. & Benson, S. W. The pyrolysis of dimethyl sulfide, kinetics and mechanism. Int. J. Chem. Kinet. 17, 749–761 (1985).

    CAS  Google Scholar 

  41. Ang, H.-G. et al. Temperature-programmed decomposition of [Mo(CO)6]: indication of surface reactions and cluster formation. J. Chem. Soc. Dalton Trans. 7, 1243–1250 (1997).

  42. Jiao, T., Leu, G.-L., Farrell, G. J. & Burkey, T. J. Photoacoustic calorimetry and quantum yields of Mo(CO)6 ligand exchange in linear alkanes: determination of volume of reaction, energetics, and kinetics of nucleophile displacement of alkane from Mo(CO)5(alkane). J. Am. Chem. Soc. 123, 4960–4965 (2001).

    CAS  Google Scholar 

  43. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Google Scholar 

  44. Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    Google Scholar 

  45. Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    CAS  Google Scholar 

  46. Bussolotti, F., Yang, J., Kawai, H., Wong, C. P. Y. & Goh, K. E. J. Impact of S-vacancies on the charge injection barrier at the electrical contact with the MoS2 monolayer. ACS Nano 15, 2686–2697 (2021).

    CAS  Google Scholar 

  47. Zhang, X. et al. Hidden vacancy benefit in monolayer 2D semiconductors. Adv. Mater. 33, 2007051 (2021).

    CAS  Google Scholar 

  48. Shen, P.-C. et al. Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron. 5, 28–36 (2022).

    CAS  Google Scholar 

  49. Lee, W. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1417 (2018).

    Google Scholar 

  50. Frisch, M. J. et al. Gaussian 16 rev. C.01, Gaussian, Inc., Wallingford CT (2016).

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea, funded by the Korean government (NRF-2015R1A3A2066337) and the Yonsei Signature Research Cluster and Lee Youn Jae Fellow Program. K.K. and S.I. acknowledge support from the National Research Foundation of Korea (SRC programme 2017R1A5A1014862, vdWMRC).

Author information

Authors and Affiliations

Authors

Contributions

A.T.H., L.H., and B.J.K. contributed equally. J.-H.A. planned and supervised the project. A.T.H. synthesized and characterized MoS2 quality. L.H., B.J.K., S.J., and J.H. conducted the FET and logic circuits fabrication and characterizations. B.J.K. conducted the fabrication and characterization of phototransistors. T.T.N.V. and B.S. performed the DFT calculations. K.D.P. and W.J.C. produced the UTG substrates. Y.J. and S.I. designed and set up the system for logic circuit measurements. A.K.K. conducted low-temperature PL measurements. K.L. and K.K. performed the dark-field TEM measurements. All authors analysed the data and wrote the paper.

Corresponding author

Correspondence to Jong-Hyun Ahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Xidong Duan and Rong Yang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Table 1 and Video 1.

Supplementary Video 1

Stretchable differential amplifier.

Source data

Source Data Fig. 2

Optical properties of LT-MoS2; DFT calculated formation energy.

Source Data Fig. 3

Electrical properties of LT-MoS2 and HT-MoS2-based transistors.

Source Data Fig. 4

Electrical properties of LT-MoS2-based logic circuits.

Source Data Fig. 5

Electrical properties of LT-MoS2-based phototransistor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, A.T., Hu, L., Kim, B.J. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023). https://doi.org/10.1038/s41565-023-01460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01460-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing