Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons

Abstract

Plastic pollution is a planetary threat that has been exacerbated by the COVID-19 pandemic due to the surge in medical waste, personal protective equipment and takeaway packaging. A socially sustainable and economically viable method for plastic recycling should not use consumable materials such as co-reactants or solvents. Here we report that Ru nanoparticles on zeolitic HZSM-5 catalyse the solvent- and hydrogen-free upcycling of high-density polyethylene into a separable distribution of linear (C1 to C6) and cyclic (C7 to C15) hydrocarbons. The valuable monocyclic hydrocarbons accounted for 60.3 mol% of the total yield. Based on mechanistic studies, the dehydrogenation of polymer chains to form C=C bonds occurs on both Ru sites and acid sites in HZSM-5, whereas carbenium ions are generated on the acid sites via the protonation of the C=C bonds. Accordingly, optimizing the Ru and acid sites promoted the cyclization process, which requires the simultaneous existence of a C=C bond and a carbenium ion on a molecular chain at an appropriate distance, providing high activity and cyclic hydrocarbon selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic performance of Ru/HZSM-5(300) in the upcycling of HDPE.
Fig. 2: Reaction route for HDPE upcycling over Ru/HZSM-5(300).
Fig. 3: The role of Ru in the upcycling of HDPE over Ru/HZSM-5(300).
Fig. 4: The role of zeolites in the upcycling of HDPE.
Fig. 5: Evaluation of the robustness of Ru/HZSM-5(300) in PE upcycling.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  CAS  Google Scholar 

  2. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  Google Scholar 

  3. Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics in the Earth system. Science 373, 51–55 (2021).

    Article  CAS  Google Scholar 

  4. Peng, Y. M., Wu, P. P., Schartup, A. T. & Zhang, Y. X. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl Acad. Sci. USA 118, e2111530118 (2021).

    Article  CAS  Google Scholar 

  5. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  6. Rahimi, A. & Garcia, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  7. Garcia, J. M. Catalyst: design challenges for the future of plastics recycling. Chem 1, 813–819 (2016).

    Article  CAS  Google Scholar 

  8. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  9. Ignatyev, I., Thielemans, A., Vander, W. & Beke, B. Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014).

    Article  CAS  Google Scholar 

  10. Vollmer, I., Jenks, M. J. F., Gonzalez, R. M., Meirer, F. & Weckhuysen, B. M. Plastic waste conversion over a refinery waste catalyst. Angew. Chem. Int. Ed. 60, 16101–16108 (2021).

    Article  CAS  Google Scholar 

  11. Martin, A. J., Mondelli, C., Jaydev, S. D. & Perez-Ramirez, J. Catalytic processing of plastic waste on the rise. Chem 7, 1487–1533 (2021).

    Article  CAS  Google Scholar 

  12. Dufaud, V. R. & Basset, J. M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica-alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37, 806–810 (1998).

    Article  CAS  Google Scholar 

  13. Tennakoon, A. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3, 893–901 (2020).

    Article  CAS  Google Scholar 

  14. Xun, W. et al. Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. J. Am. Chem. Soc. 144, 5323–5334 (2022).

    Article  Google Scholar 

  15. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Article  CAS  Google Scholar 

  16. Wang, N. M. et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene. J. Am. Chem. Soc. 144, 18526–18531 (2022).

    Article  CAS  Google Scholar 

  17. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  Google Scholar 

  18. Lee, W. T. et al. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nat. Commun. 13, 4850 (2022).

    Article  CAS  Google Scholar 

  19. Bandini, M., Melloni, A. & Umani-Ronchi, A. New catalytic approaches in the stereoselective Friedel–Crafts alkylation reaction. Angew. Chem. Int. Ed. 43, 550–556 (2004).

    Article  CAS  Google Scholar 

  20. Matos, J. L. M. et al. Cycloisomerization of olefins in water. Angew. Chem. Int. Ed. 59, 12998–13003 (2020).

    Article  CAS  Google Scholar 

  21. Liu, S. B., Kots, P. A., Vance, B. C., Danielson, A. & Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7, eabf8283 (2021).

    Article  CAS  Google Scholar 

  22. Wang, D., Xie, Z. H., Porosoff, M. D. & Chen, J. G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem 7, 2277–2311 (2021).

    Article  CAS  Google Scholar 

  23. Coonradt, H. L. & Garwood, W. E. Mechanism of hydrocracking. Reactions of paraffins and olefins. Ind. Eng. Chem. Res. 3, 38–45 (1964).

  24. Zečević, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

    Article  Google Scholar 

  25. Rorrer, J. E., Beckham, G. T. & Román-Leshkov, Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au. 1, 8–12 (2021).

    Article  CAS  Google Scholar 

  26. Zhao, W., Chizallet, C., Sautet, P. & Raybaud, P. Dehydrogenation mechanisms of methyl-cyclohexane on γ-Al2O3 supported Pt13: impact of cluster ductility. J. Catal. 370, 118–129 (2019).

    Article  CAS  Google Scholar 

  27. Tsai, M. C., Friend, C. M. & Muetterties, E. L. Dehydrogenation processes on nickel and platinum surfaces. Conversion of cyclohexane, cyclohexene, and cyclohexadiene to benzene. J. Am. Chem. Soc. 104, 2539–2543 (1982).

    Article  CAS  Google Scholar 

  28. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article  Google Scholar 

  29. Eschenbacher, A. et al. Highly selective conversion of mixed polyolefins to valuable base chemicals using phosphorus-modified and steam-treated mesoporous HZSM-5 zeolite with minimal carbon footprint. Appl. Catal. B 309, 121251 (2022).

    Article  CAS  Google Scholar 

  30. Kongmanklang, C. & Rangsriwatananon, K. Hydrothermal synthesis of high crystalline silicalite from rice husk ash. J. Spectrosc. 2015, 696513 (2015).

    Article  Google Scholar 

  31. Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal. 216, 298–312 (2003).

    Article  CAS  Google Scholar 

  32. Wang, C. F. et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat. Commun. 10, 4348 (2019).

    Article  Google Scholar 

  33. Cnudde, P. et al. Experimental and theoretical evidence for the promotional effect of acid sites on the diffusion of alkenes through small-pore zeolites. Angew. Chem. Int. Ed. 60, 10016–10022 (2021).

    Article  CAS  Google Scholar 

  34. Wang, N. et al. Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nat. Commun. 11, 1079 (2020).

    Article  CAS  Google Scholar 

  35. Cnudde, P. et al. Light olefin diffusion during the MTO process on H‑SAPO-34: a complex interplay of molecular factors. J. Am. Chem. Soc. 142, 6007–6017 (2020).

    Article  CAS  Google Scholar 

  36. Verboekend, D., Vile, G. & Perez-Ramirez, J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv. Funct. Mater. 22, 916–928 (2012).

    Article  CAS  Google Scholar 

  37. Peng, X. B. et al. Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew. Chem. Int. Ed. 54, 4553–4556 (2015).

    Article  CAS  Google Scholar 

  38. Shoinkhorova, T. et al. Highly selective and stable production of aromatics via high-pressure methanol conversion. ACS Catal. 11, 3602–3613 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1500500 and 2019YFA0405600), the CAS Project for Young Scientists in Basic Research (YSBR-051), the National Science Fund for Distinguished Young Scholars (21925204), the NSFC (U19A2015, 22221003 and 22204158), the Fundamental Research Funds for the Central Universities, the Provincial Key Research and Development Program of Anhui (202004a05020074), K. C. Wong Education (GJTD-2020-15), the DNL Cooperation Fund, CAS (DNL202003), the Natural Science Foundation of Anhui Province (2208085QB42) and the USTC Research Funds of the Double First-Class Initiative. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

J.D., L.Z., H.L. and J.Z. designed the study and wrote the paper. J.D., T.Y. and C.W. synthesized the catalysts. J.D., L.Z., M.W., L.L., W.W. and H.L. performed the catalytic tests. L.Z. and Z.P. conducted the PXRD measurements. W.W., H.L., Z.P. and J.Z. conducted the mechanistic measurements, including TPD and SVUV-PIMS. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jie Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structure characterization and catalytic performance of Ru/HZSM-5(300).

(a) XRD pattern of Ru/HZSM-5(300). (b) TEM images of fresh Ru/HZSM-5(300). (c) TEM images of Ru/HZSM-5(300) after HDPE upcycling at 280 °C for 24 h. (d) Detailed hydrocarbon distribution of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics over Ru/HZSM-5(300) in HDPE upcycling at 280 °C for 24 h. (e) Full-range GC-MS analysis of products over Ru/HZSM-5(300) in HDPE upcycling at 280 °C for 24 h.

Source data

Extended Data Fig. 2 The influence of external H2.

(a) Yields of volatiles/gases, liquid phase products, and insoluble hydrocarbons. (b) Selectivity among volatiles/gases and liquid phase products over Ru/HZSM-5(300) in HDPE upcycling at 280 °C for 24 h with 2.5 MPa external H2 or without H2. (c,d) Detailed hydrocarbon selectivity of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics over Ru/HZSM-5(300)-with external H2 in HDPE upcycling at 280 °C for 24 h. (e) Full-range GC-MS analysis of products over Ru/HZSM-5(300)-with external H2 in HDPE upcycling at 280 °C for 24 h.

Source data

Extended Data Fig. 3 Structure characterization of HZSM-5(300)_R.

(a) XRD pattern of HZSM-5(300)_R. (b) Normalized Al 2p XPS peak intensity on the surface of HZSM-5(300) and HZSM-5(300)_R.

Source data

Extended Data Fig. 4 The role of surface acid sites.

(a) Yields of volatiles/gases, liquid phase products, and insoluble hydrocarbons. (b) Selectivity among volatiles/gases and liquid phase products over HZSM-5(300) and HZSM-5(300)_R in HDPE upcycling at 280 °C for 24 h. (c,d) Detailed hydrocarbon selectivity of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics over Ru/HZSM-5(300)_R in HDPE upcycling at 280 °C for 24 h. (e) Full-range GC-MS analysis of products over Ru/HZSM-5(300)_R in HDPE upcycling at 280 °C for 24 h.

Source data

Extended Data Fig. 5 Detailed product distribution over Ru/USY in HDPE upcycling at 280 °C for 24 h.

(a,b) Detailed hydrocarbon selectivity of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics. (c) Full-range GC-MS analysis of products.

Source data

Extended Data Fig. 6 The influence of pore structures.

(a,b) Detailed hydrocarbon selectivity of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics over Ru/SAPO-34 in HDPE upcycling at 280 °C for 24 h. (c) Full-range GC-MS analysis of products over Ru/SAPO-34 in HDPE upcycling at 280 °C for 24 h. (d) Schematic illustration of pore confinement in SAPO-34. SAPO-34 cages have large empty interiors and narrow mouths. Once the fused aromatic rings are generated, they cannot exit the narrow mouth, resulting in the accumulation within the cage to form cokes.

Source data

Extended Data Fig. 7 Catalytic performance of Ru/HZSM-5(300)-Spent in HDPE upcycling at 280°C for 24h.

(a) Yields of volatiles/gases, liquid phase products, and insoluble hydrocarbons. (b) Selectivity among volatiles/gases and liquid phase products over fresh and spent Ru/HZSM-5(300) in HDPE upcycling at 280 °C for 24 h. (c,d) Detailed hydrocarbon selectivity of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics over Ru/HZSM-5(300)-Spent in HDPE upcycling at 280 °C for 24 h. (e) Full-range GC-MS analysis of products over Ru/HZSM-5(300)-Spent in HDPE upcycling at 280 °C for 24 h.

Source data

Extended Data Fig. 8 Detailed product distribution over Ru/HZSM-5(300) in three consecutive runs of HDPE upcycling at 280 °C for 24 h.

(a,b,d,e) Detailed hydrocarbon selectivity of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics. (c,f) Full-range GC-MS analysis of products. Panels a-c refer to the second run. Panels d-f refer to the third run.

Source data

Extended Data Fig. 9 Detailed product distribution over Ru/HZSM-5(300) in LDPE upcycling at 280 °C for 24 h.

(a,b) Detailed hydrocarbon selectivity of alkanes, olefins, cycloalkanes, cycloolefins, and aromatics. (c) Full-range GC-MS analysis of products.

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–26 and Tables 1–16.

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Source data for the catalytic performance of Ru/HZSM-5(300) in the upcycling of HDPE.

Source Data Fig. 3

Source data for the role of Ru in the upcycling of HDPE over Ru/HZSM-5(300).

Source Data Fig. 4

Source data for the role of zeolites in the upcycling of HDPE.

Source Data Fig. 5

Source data for the robustness evaluation of Ru/HZSM-5(300) in PE upcycling.

Source Data Extended Data Fig. 1

Source data for the structure characterization and catalytic performance of Ru/HZSM-5(300).

Source Data Extended Data Fig. 2

Source data for the influence of external H2 in the upcycling of HDPE over Ru/HZSM-5(300).

Source Data Extended Data Fig. 3

Source data for the structure characterization of HZSM-5(300)_R.

Source Data Extended Data Fig. 4

Source data for the role of surface acid in the upcycling of HDPE over HZSM-5(300).

Source Data Extended Data Fig. 5

Source data for the detailed product distribution over Ru/USY in the upcycling of HDPE at 280 °C for 24 h.

Source Data Extended Data Fig. 6

Source data for the influence of the pore structure of SAPO-34 in HDPE upcycling.

Source Data Extended Data Fig. 7

Source data for the catalytic performance of Ru/HZSM-5(300)-Spent in the upcycling of HDPE at 280 °C for 24 h.

Source Data Extended Data Fig. 8

Source data for the detailed product distribution over Ru/HZSM-5(300) in three consecutive runs of HDPE upcycling at 28 C for 24 h.

Source Data Extended Data Fig. 9

Source data for the detailed product distribution over Ru/HZSM-5(300) in LDPE upcycling at 28 °C for 24 h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Zeng, L., Yan, T. et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nat. Nanotechnol. 18, 772–779 (2023). https://doi.org/10.1038/s41565-023-01429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01429-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing