Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry


The MXene family of two-dimensional transition metal carbides and nitrides already includes ~50 members with distinct numbers of atomic layers, stoichiometric compositions and solid solutions, in-plane or out-of-plane ordering of atoms, and a variety of surface terminations. MXenes have shown properties that make them attractive for applications ranging from energy storage to electronics and medicine. Although this compositional variability allows fine-tuning of the MXene properties, it also creates challenges during the analysis of MXenes because of the presence of multiple light elements (for example, H, C, N, O, and F) in close proximity. Here, we show depth profiling of single particles of MXenes and their parent MAX phases with atomic resolution using ultralow-energy secondary-ion mass spectrometry. We directly detect oxygen in the carbon sublattice, thereby demonstrating the existence of oxycarbide MXenes. We also determine the composition of adjacent surface termination layers and show their interaction with each other. Analysis of the metal sublattice shows that Mo2TiAlC2 MAX exhibits perfect out-of-plane ordering, whereas Cr2TiAlC2 MAX exhibits some intermixing between Cr and Ti in the inner transition metal layer. Our results showcase the capabilities of the developed secondary-ion mass spectrometry technique to probe the composition of layered and two-dimensional materials with monoatomic-layer precision.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of the SIMS measurements with atomic-layer resolution.
Fig. 2: Depth profiles of Ti3AlC2 MAX and multilayer Ti3C2Tx MXene.
Fig. 3: Analysis of surface termination distribution in multilayer Ti3C2Tx MXene by depth profiling.
Fig. 4: Depth profiles of Mo2TiAlC2 (top) and Cr2TiAlC2 (bottom) MAX samples.

Data availability

All relevant data are available from the authors on reasonable request, and/or are included within the Article and the Supplementary Information.


  1. Gogotsi, Y. & Huang, Q. MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021).

    CAS  Article  Google Scholar 

  2. Naguib, M., Barsoum, M. W. & Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021).

    CAS  Article  Google Scholar 

  3. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    CAS  Article  Google Scholar 

  4. Kim, H. & Alshareef, H. N. MXetronics: MXene-enabled electronic and photonic devices. ACS Mater. Lett. 2, 55–70 (2020).

    CAS  Article  Google Scholar 

  5. Shekhirev, M., Shuck, C. E., Sarycheva, A. & Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 120, 100757 (2021).

    CAS  Article  Google Scholar 

  6. Benninghoven, A. Developments in secondary ion mass spectroscopy and applications to surface studies. Surf. Sci. 53, 596–625 (1975).

    CAS  Article  Google Scholar 

  7. Gnaser, H. SIMS detection in the 1012 atoms cm−3 range. Surf. Interface Anal. 25, 737–740 (1997).

    CAS  Article  Google Scholar 

  8. Stevie, F. A. & Griffis, D. P. Quantification in dynamic SIMS: current status and future needs. Appl. Surf. Sci. 255, 1364–1367 (2008).

    CAS  Article  Google Scholar 

  9. Emziane, M., Durose, K., Halliday, D. P., Bosio, A. & Romeo, N. In situ oxygen incorporation and related issues in CdTe/CdS photovoltaic devices. J. Appl. Phys. 100, 013513 (2006).

    Article  Google Scholar 

  10. Pazniak, H. et al. Ion implantation as an approach for structural modifications and functionalization of Ti3C2Tx MXenes. ACS Nano 15, 4245–4255 (2021).

    CAS  Article  Google Scholar 

  11. Wang, C.-Y. et al. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 74, 104817 (2020).

    CAS  Article  Google Scholar 

  12. Wustoni, S. et al. MXene improves the stability and electrochemical performance of electropolymerized PEDOT films. APL Mater. 8, 121105 (2020).

    CAS  Article  Google Scholar 

  13. Lorencova, L. et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta 235, 471–479 (2017).

    CAS  Article  Google Scholar 

  14. Clegg, J. B. Secondary ion mass spectrometry—a practical handbook for depth profiling and bulk impurity analysis Wiley, New York, 1989. Surf. Interface Anal. 17, 221 (1991).

    Article  Google Scholar 

  15. Vandervorst, W. Semiconductor profiling with sub-nm resolution: challenges and solutions. Appl. Surf. Sci. 255, 805–812 (2008).

    CAS  Article  Google Scholar 

  16. Michałowski, P. P. et al. Precise localization of contaminants in graphene with secondary ion mass spectrometry. Measurement 187, 110308 (2022).

    Article  Google Scholar 

  17. Michałowski, P. P. et al. Defect-mediated sputtering process of boron nitride during high incident angle low-energy ion bombardment. Measurement 179, 109487 (2021).

    Article  Google Scholar 

  18. Michałowski, P. P., Caban, P. & Baranowski, J. Secondary ion mass spectrometry investigation of carbon grain formation in boron nitride epitaxial layers with atomic depth resolution. J. Anal. At. Spectrom. 34, 848–853 (2019).

    Article  Google Scholar 

  19. Michałowski, P. P. et al. Growth of highly oriented MoS2 via an intercalation process in the graphene/SiC(0001) system. Phys. Chem. Chem. Phys. 21, 20641–20646 (2019).

    Article  Google Scholar 

  20. Jiang, B., Huang, K., Cao, Z. & Zhu, H. Thermodynamic study of titanium oxycarbide. Metall. Mater. Trans. A 43, 3510–3514 (2012).

    CAS  Article  Google Scholar 

  21. Zhang, B., Xiao, J., Jiao, S. & Zhu, H. A novel titanium oxycarbide phase with metal-vacancy (Ti1–yCxO1–x): structural and thermodynamic basis. Ceram. Int. 47, 16324–16332 (2021).

    CAS  Article  Google Scholar 

  22. Prikhna, T. et al. Presence of oxygen in Ti-Al-C MAX phases-based materials and their stability in oxidizing environment at elevated temperatures. Acta Phys. Pol. A 133, 789–793 (2018).

    CAS  Article  Google Scholar 

  23. Colonna, F. & Elsässer, C. First principles DFT study of interstitial hydrogen and oxygen atoms in the MAX phase Ti2AlN. RSC Adv. 7, 37852–37857 (2017).

    CAS  Article  Google Scholar 

  24. Sang, X. et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016).

    CAS  Article  Google Scholar 

  25. Mathis, T. S. et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021).

    CAS  Article  Google Scholar 

  26. Rosen, J. et al. Oxygen incorporation in Ti2AlC thin films. Appl. Phys. Lett. 92, 064102 (2008).

    Article  Google Scholar 

  27. Persson, P. O. Å., Rosén, J., McKenzie, D. R. & Bilek, M. M. M. Formation of the MAX-phase oxycarbide Ti2AlC1–xOx studied via electron energy-loss spectroscopy and first-principles calculations. Phys. Rev. B 80, 092102 (2009).

    Article  Google Scholar 

  28. Mockute, A., Dahlqvist, M., Hultman, L., Persson, P. O. Å. & Rosen, J. Oxygen incorporation in Ti2AlC thin films studied by electron energy loss spectroscopy and ab initio calculations. J. Mater. Sci. 48, 3686–3691 (2013).

    CAS  Article  Google Scholar 

  29. Dahlqvist, M., Alling, B., Abrikosov, I. A. & Rosén, J. Phase stability of Ti2AlC upon oxygen incorporation: a first-principles investigation. Phys. Rev. B 81, 024111 (2010).

    Article  Google Scholar 

  30. Persson, I. et al. How much oxygen can a MXene surface take before it breaks? Adv. Funct. Mater. 30, 1909005 (2020).

    CAS  Article  Google Scholar 

  31. Tran, M. H. et al. Experimental and theoretical investigation of the chemical exfoliation of Cr-based MAX phase particles. Dalton Trans. 49, 12215–12221 (2020).

    CAS  Article  Google Scholar 

  32. Maleski, K., Shuck, C. E., Fafarman, A. T. & Gogotsi, Y. The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 9, 2001563 (2021).

    CAS  Article  Google Scholar 

  33. Hart, J. L., Hantanasirisakul, K., Gogotsi, Y. & Taheri, M. L. Termination-property coupling via reversible oxygen functionalization of MXenes. ACS Nanosci. Au (2022).

  34. Hu, T., Yang, J. & Wang, X. Carbon vacancies in Ti2CT2 MXenes: defects or a new opportunity? Phys. Chem. Chem. Phys. 19, 31773–31780 (2017).

    CAS  Article  Google Scholar 

  35. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    CAS  Article  Google Scholar 

  36. Wang, H.-W., Naguib, M., Page, K., Wesolowski, D. J. & Gogotsi, Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mater. 28, 349–359 (2016).

    CAS  Article  Google Scholar 

  37. Hu, T. et al. Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study. J. Phys. Chem. C 121, 19254–19261 (2017).

    CAS  Article  Google Scholar 

  38. Kim, Y.-J. et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33, 6346–6355 (2021).

    CAS  Article  Google Scholar 

  39. Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

    CAS  Article  Google Scholar 

  40. Hantanasirisakul, K. et al. Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene. Nanoscale Horiz. 5, 1557–1565 (2020).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Science Centre (NCN) within SONATA 14 2018/31/D/ST5/00399 and National Centre for Research and Development (NCBR) within LIDER XII LIDER/8/0055/L-12/20/NCBR/2021 projects. MXene synthesis and characterization conducted at Drexel University were supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, grant no. DE-SC0018618. M.A. was supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1646737 and the US Department of Education Graduate Assistance in Areas of National Need (GAANN) fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The SEM and XRD analyses were performed using instruments in the Materials Characterization Core at Drexel University. We thank B. Anasori (IUPUI, USA) for preparing the Mo2TiAlC2 and Cr2TiAlC2 MAX samples.

Author information

Authors and Affiliations



T.S.M. prepared the MAX samples. M.A. prepared the MXene samples. P.P.M. established the measurement procedures and carried out the SIMS experiments. P.P.M., S.K. and A.W. interpreted the SIMS results. I.J., A.P., M.M., A.M., R.D. and E.W. provided the additional SEM, FTIR and XRD characterization data, which were needed to establish the SIMS measurement procedure. M.A. performed the SEM, XRD and optical microscopy analyses for the MAX and MXenes. P.P.M., M.A., T.S.M., S.K., A.W., K.H. and Y.G. wrote the manuscript with suggestions and comments from all the authors. P.P.M. supervised the SIMS analysis and Y.G. supervised the MAX and MXene analyses. P.P.M. and Y.G. planned and supervised the entire project.

Corresponding authors

Correspondence to Paweł P. Michałowski or Yury Gogotsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Table 1 and Discussion.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michałowski, P.P., Anayee, M., Mathis, T.S. et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research