Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan

Abstract

Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu2+-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM. The Cu2+ ions are coordinated with the amino and hydroxyl groups of chitosan to crosslink the chitosan chains, forming hexagonal nanochannels (~1 nm in diameter) that can accommodate water diffusion and facilitate fast ion transport, with a high hydroxide conductivity of 67 mS cm−1 at room temperature. The Cu2+ coordination also enhances the mechanical strength of the membrane, reduces its permeability and, most importantly, improves its stability in alkaline solution (only 5% conductivity loss at 80 °C after 1,000 h). These advantages make chitosan-Cu an outstanding HEM, which we demonstrate in a direct methanol fuel cell that exhibits a high power density of 305 mW cm−2. The design principle of the chitosan-Cu HEM, in which ion transport channels are generated in the polymer through metal-crosslinking of polar functional groups, could inspire the synthesis of many ion exchange membranes for ion transport, ion sieving, ion filtration and more.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Converting chitin biowaste to a chitosan-Cu HEM.
Fig. 2: Fabrication and characterization of the chitosan-Cu membrane.
Fig. 3: The crystalline structure of chitosan and chitosan-Cu.
Fig. 4: The OH conductivity and alkali stability of chitosan-Cu.
Fig. 5: Applying the chitosan-Cu membrane in a DMFC.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Source data are provided with this paper. Other relevant data are available from the corresponding authors on reasonable request.

References

  1. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    Article  CAS  Google Scholar 

  2. Arges, C. G. & Zhang, L. Anion exchange membranes evolution toward high hydroxide ion conductivity and alkaline resiliency. ACS Appl. Energy Mater. 1, 2991–3012 (2018).

    Article  CAS  Google Scholar 

  3. Lu, S., Pan, J., Huang, A., Zhuang, L. & Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).

    Article  CAS  Google Scholar 

  4. Xiong, P., Zhang, L., Chen, Y., Peng, S. & Yu, G. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew. Chem. Int. Ed. Engl. 60, 2–31 (2021).

    Article  CAS  Google Scholar 

  5. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  CAS  Google Scholar 

  6. Gasteiger, H. A. & Marković, N. M. Just a dream—or future reality? Science 324, 48–49 (2009).

    Article  CAS  Google Scholar 

  7. Jin, Z. et al. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615–622 (2021).

    Article  CAS  Google Scholar 

  8. Hren, M., Božič, M., Fakin, D., Kleinschek, K. S. & Gorgieva, S. Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustain. Energy Fuels 5, 604–637 (2021).

    Article  CAS  Google Scholar 

  9. Setzler, B. P., Zhuang, Z., Wittkopf, J. A. & Yan, Y. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 11, 1020–1025 (2016).

    Article  CAS  Google Scholar 

  10. Li, N., Zhang, Q., Wang, C., Lee, Y. M. & Guiver, M. D. Phenyltrimethylammonium functionalized polysulfone anion exchange membranes. Macromolecules 45, 2411–2419 (2012).

    Article  CAS  Google Scholar 

  11. Kostalik, H. A. et al. Solvent processable tetraalkylammonium-functionalized polyethylene for use as an alkaline anion exchange membrane. Macromolecules 43, 7147–7150 (2010).

    Article  CAS  Google Scholar 

  12. Hugar, K. M., Kostalik, H. A. & Coates, G. W. Imidazolium cations with exceptional alkaline stability: a systematic study of structure–stability relationships. J. Am. Chem. Soc. 137, 8730–8737 (2015).

    Article  CAS  Google Scholar 

  13. Sata, T., Yamane, Y. & Matsusaki, K. Preparation and properties of anion exchange membranes having pyridinium or pyridinium derivatives as anion exchange groups. J. Polym. Sci. A Polym. Chem. 36, 49–58 (1998).

    Article  CAS  Google Scholar 

  14. Sun, Z., Pan, J., Guo, J. & Yan, F. The alkaline stability of anion exchange membrane for fuel cell applications: the effects of alkaline media. Adv. Sci. 5, 1800065 (2018).

    Article  CAS  Google Scholar 

  15. Wang, J., Gu, S., Kaspar, R. B., Zhang, B. & Yan, Y. Stabilizing the imidazolium cation in hydroxide-exchange membranes for fuel cells. ChemSusChem 6, 2079–2082 (2013).

    Article  CAS  Google Scholar 

  16. Mustain, W. E., Chatenet, M., Page, M. & Kim, Y. S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 13, 2805–2838 (2020).

    Article  CAS  Google Scholar 

  17. Noh, S., Jeon, J. Y., Adhikari, S., Kim, Y. S. & Bae, C. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Acc. Chem. Res. 52, 2745–2755 (2019).

    Article  CAS  Google Scholar 

  18. Kim, S.-K. Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications 1st edn (CRC Press, 2011).

  19. Xu, C., Nasrollahzadeh, M., Selva, M., Issaabadi, Z. & Luque, R. Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem. Soc. Rev. 48, 4791–4822 (2019).

    Article  CAS  Google Scholar 

  20. Ogawa, K., Hirano, S., Miyanishi, T., Yui, T. & Watanabe, T. A new polymorph of chitosan. Macromolecules 17, 973–975 (1984).

    Article  CAS  Google Scholar 

  21. Kraytsberg, A. & Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014).

    Article  CAS  Google Scholar 

  22. Peter, S. et al. Chitin and chitosan based composites for energy and environmental applications: a review. Waste Biomass Valoriz. 12, 4777–4804 (2020).

    Article  CAS  Google Scholar 

  23. Sikorski, P., Hori, R. & Wada, M. Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 10, 1100–1105 (2009).

    Article  CAS  Google Scholar 

  24. Okuyama, K. et al. Structural diversity of chitosan and its complexes. Carbohydr. Polym. 41, 237–247 (2000).

    Article  CAS  Google Scholar 

  25. Ogawa, K., Oka, K. & Yui, T. X-ray study of chitosan-transition metal complexes. Chem. Mater. 5, 726–728 (1993).

    Article  CAS  Google Scholar 

  26. Li, N., Guiver, M. D. & Binder, W. H. Towards high conductivity in anion-exchange membranes for alkaline fuel cells. ChemSusChem 6, 1376–1383 (2013).

    Article  CAS  Google Scholar 

  27. Yassin, K., Rasin, I. G., Brandon, S. & Dekel, D. R. Quantifying the critical effect of water diffusivity in anion exchange membranes for fuel cell applications. J. Membr. Sci. 608, 118206 (2020).

    Article  CAS  Google Scholar 

  28. Zelovich, T. et al. Hydroxide ion diffusion in anion-exchange membranes at low hydration: insights from ab initio molecular dynamics. Chem. Mater. 31, 5778–5787 (2019).

    Article  CAS  Google Scholar 

  29. Zadok, I., Dekel, D. R. & Srebnik, S. Effect of ammonium cations on the diffusivity and structure of hydroxide ions in low hydration media. J. Phys. Chem. C 123, 27355–27362 (2019).

    Article  CAS  Google Scholar 

  30. Tuckerman, M. E., Chandra, A. & Marx, D. Structure and dynamics of OH(aq). Acc. Chem. Res. 39, 151–158 (2006).

    Article  CAS  Google Scholar 

  31. Zadok, I. et al. Unexpected hydroxide ion structure and properties at low hydration. J. Mol. Lip. 313, 113485 (2020).

    Article  CAS  Google Scholar 

  32. Zha, Y., Disabb-Miller, M. L., Johnson, Z. D., Hickner, M. A. & Tew, G. N. Metal-cation-based anion exchange membranes. J. Am. Chem. Soc. 134, 4493–4496 (2012).

    Article  CAS  Google Scholar 

  33. Gu, S. et al. Permethyl cobaltocenium (Cp*2Co+) as an ultra-stable cation for polymer hydroxide-exchange membranes. Sci. Rep. 5, 11668 (2015).

    Article  CAS  Google Scholar 

  34. Diesendruck, C. E. & Dekel, D. R. Water – a key parameter in the stability of anion exchange membrane fuel cells. Curr. Opin. Electrochem. 9, 173–178 (2018).

    Article  CAS  Google Scholar 

  35. Dekel, D. R. et al. Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications. Chem. Mater. 29, 4425–4431 (2017).

    Article  CAS  Google Scholar 

  36. Gjineci, N., Aharonovich, S., Dekel, D. R. & Diesendruck, C. E. Increasing the alkaline stability of N,N-diaryl carbazolium salts using substituent electronic effects. ACS Appl. Mater. Interfaces 12, 49617–49625 (2020).

    Article  CAS  Google Scholar 

  37. Dekel, D. R. et al. The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment. J. Power Sources 375, 351–360 (2018).

    Article  CAS  Google Scholar 

  38. Allen, F. I. et al. Morphology of hydrated as-cast Nafion revealed through cryo electron tomography. ACS Macro Lett. 4, 1–5 (2015).

    Article  CAS  Google Scholar 

  39. Chen, N. et al. Cobaltocenium-containing polybenzimidazole polymers for alkaline anion exchange membrane applications. Polym. Chem. 8, 1381–1392 (2017).

    Article  CAS  Google Scholar 

  40. Fan, J. et al. Cationic polyelectrolytes, stable in 10 M KOHaq at 100 °C. ACS Macro Lett. 6, 1089–1093 (2017).

    Article  CAS  Google Scholar 

  41. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    Article  CAS  Google Scholar 

  42. Liu, G. et al. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J. Membr. Sci. 611, 118242 (2020).

    Article  CAS  Google Scholar 

  43. Heinzel, A. & Barragán, V. M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources 84, 70–74 (1999).

    Article  CAS  Google Scholar 

  44. Zhu, H. et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl Acad. Sci. USA 112, 8971–8976 (2015).

    Article  CAS  Google Scholar 

  45. Di Noto, V. et al. Inorganic–organic membranes based on Nafion, [(ZrO2)·(HfO2)0.25] and [(SiO2)·(HfO2)0.28] nanoparticles. Part II: relaxations and conductivity mechanism. Int. J. Hydrog. Energy 37, 6215–6227 (2012).

    Article  CAS  Google Scholar 

  46. Kaspar, R. B. et al. Manipulating water in high-performance hydroxide exchange membrane fuel cells through asymmetric humidification and wetproofing. J. Electrochem. Soc. 162, F483–F488 (2015).

    Article  CAS  Google Scholar 

  47. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  CAS  Google Scholar 

  48. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phy. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  49. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phy. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  50. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  51. Gillan, M. J., Alfè, D. & Michaelides, A. Perspective: how good is DFT for water? J. Chem. Phys. 144, 130901 (2016).

    Article  CAS  Google Scholar 

  52. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article  Google Scholar 

  53. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  54. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.H. and M.W. acknowledge support from the University of Maryland A. James Clark School of Engineering and Maryland Nanocenter, its Surface Analysis Center and AIMLab. R.M.B. and X.Z. acknowledge support from the US National Institute of Standards and Technology under cooperative agreement no. 70NANB15H261. The NMR work at Hunter College is supported by the US Office of Naval Research under grant no. N00014-20-1-2186. XAS research conducted at beamline 9-BM used resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Research used resources of the Center for Functional Nanomaterials and the SMI beamline (12-ID) of the National Synchrotron Light Source II, both supported by US DOE Office of Science Facilities at Brookhaven National Laboratory under contract no. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and M.W. conceived the idea and designed the experiments. M.W. performed and interpreted the chitosan-Cu membrane fabrication, characterization and conductivity studies. X.Z., Y. Zhang and R.M.B. conducted and interpreted the aligned chitosan-Cu fabrication and X-ray diffraction measurements. Y. Zhao and Y.Y. performed the single fuel cell studies and the methanol permeability measurements. M.W. and S.J. took the digital photographs, zeta potential measurements and performed the tensile strain–stress tests. Q.W. and Y.Q. performed the AIMD and DFT simulations. S.B., M.G. and S.G.G. conducted the NMR measurements. T.W., N.L. and J.T.M. performed and interpreted the XAS measurements. M.W., X.Z., C.Y., A.B. and L.H. collectively wrote the paper. All authors commented on the final manuscript.

Corresponding author

Correspondence to Liangbing Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Nanotechnology thanks Dario Dekel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1–12 and Discussion.

Source data

Source Data Fig. 2

XPS and XAS spectra of chitosan-Cu.

Source Data Fig. 3

X-ray diffraction of chitosan-Cu membrane and aligned chitosan-Cu.

Source Data Fig. 4

EIS, conductivity evolution with relative humidity, stability of conductivity and simulated bond distance evolution.

Source Data Fig. 5

Methanol permeability, tensile stress–strain, single-cell polarization and power density, power density comparation, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhang, X., Zhao, Y. et al. A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nat. Nanotechnol. 17, 629–636 (2022). https://doi.org/10.1038/s41565-022-01112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01112-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing