Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting

Abstract

Strongly interacting artificial spin systems are moving beyond mimicking naturally occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically, artificial spin systems comprise nanomagnets with a single magnetization texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we have achieved macrospin–vortex bistability and demonstrated a four-state metamaterial spin system, the ‘artificial spin-vortex ice’ (ASVI). ASVI can host Ising-like macrospins with strong ice-like vertex interactions and weakly coupled vortices with low stray dipolar field. Vortices and macrospins exhibit starkly differing spin-wave spectra with analogue mode amplitude control and mode frequency shifts of Δf = 3.8 GHz. The enhanced bitextural microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex injection and history-dependent non-linear fading memory when driven through global magnetic field cycles. We employed spin-wave microstate fingerprinting for rapid, scalable readout of vortex and macrospin populations, and leveraged this for spin-wave reservoir computation. ASVI performs non-linear mapping transformations of diverse input and target signals in addition to chaotic time-series forecasting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial spin-vortex ice.
Fig. 2: Reconfigurably directed vortex evolution and spin-wave spectra.
Fig. 3: Simulated spatial magnon mode-power maps and heatmap.
Fig. 4: Vortex-to-macrospin conversion and complex field-cycling sequences.
Fig. 5: ASVI reservoir time-series transformation and prediction.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

Code availability

The code used in this study is available from the corresponding author upon reasonable request.

References

  1. Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).

    Article  Google Scholar 

  2. Wang, R. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  CAS  Google Scholar 

  3. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  CAS  Google Scholar 

  4. Ladak, S., Read, D., Perkins, G., Cohen, L. & Branford, W. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).

    Article  CAS  Google Scholar 

  5. Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).

    Article  CAS  Google Scholar 

  6. Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 905, 1–59 (2021).

    Article  CAS  Google Scholar 

  7. Sklenar, J. et al. Field-induced phase coexistence in an artificial spin ice. Nat. Phys. 15, 191–195 (2019).

    Article  CAS  Google Scholar 

  8. Louis, D. et al. A tunable magnetic metamaterial based on the dipolar four-state Potts model. Nat. Mater. 17, 1076–1080 (2018).

    Article  CAS  Google Scholar 

  9. Grundler, D. Reconfigurable magnonics heats up. Nat. Phys. 11, 438–441 (2015).

    Article  CAS  Google Scholar 

  10. Chumak, A., Serga, A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

    Article  Google Scholar 

  11. Barman, A., Mondal, S., Sahoo, S. & De, A. Magnetization dynamics of nanoscale magnetic materials: a perspective. J. Appl. Phys. 128, 170901 (2020).

    Article  CAS  Google Scholar 

  12. Kaffash, M. T., Lendinez, S. & Jungfleisch, M. B. Nanomagnonics with artificial spin ice. Phys. Lett. A 402, 127364 (2021).

    Article  CAS  Google Scholar 

  13. Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    Article  CAS  Google Scholar 

  14. Papp, Á., Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).

    Article  CAS  Google Scholar 

  15. Dion, T. et al. Observation and control of collective spin-wave mode-hybridisation in chevron arrays and square, staircase and brickwork artificial spin ices. Phys. Rev. Res. 4, 013107 (2022).

    Article  CAS  Google Scholar 

  16. Arroo, D. M., Gartside, J. C. & Branford, W. R. Sculpting the spin-wave response of artificial spin ice via microstate selection. Phys. Rev. B 100, 214425 (2019).

    Article  CAS  Google Scholar 

  17. Dion, T. et al. Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification. Phys. Rev. B 100, 054433 (2019).

    Article  CAS  Google Scholar 

  18. Stenning, K. D. et al. Magnonic bending, phase shifting and interferometry in a 2D reconfigurable nanodisk crystal. ACS Nano 15, 674–685 (2020).

    Article  Google Scholar 

  19. Vanstone, A. et al. Spectral-fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin systems. Preprint at https://arXiv.org/abs/2106.04406 (2021).

  20. Chaurasiya, A. K. et al. Comparison of spin-wave modes in connected and disconnected artificial spin ice nanostructures using Brillouin light scattering spectroscopy. ACS Nano 15, 11734–11742 (2021).

    Article  CAS  Google Scholar 

  21. Lendinez, S., Kaffash, M. T. & Jungfleisch, M. B. Emergent spin dynamics enabled by lattice interactions in a bicomponent artificial spin ice. Nano Lett. 21, 1921–1927 (2021).

    Article  CAS  Google Scholar 

  22. Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).

    Article  CAS  Google Scholar 

  23. Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).

    Article  Google Scholar 

  24. Nakajima, K. Physical reservoir computing—an introductory perspective. Jpn. J. Appl. Phys. 59, 060501 (2020).

    Article  CAS  Google Scholar 

  25. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article  Google Scholar 

  26. Milano, G. et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21, 195–202 (2022).

    Article  CAS  Google Scholar 

  27. Chumak, A. et al. Roadmap on spin-wave computing. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2022.3149664 (2022).

  28. Dawidek, R. W. et al. Dynamically driven emergence in a nanomagnetic system. Adv. Funct. Mater. 31, 2008389 (2021).

    Article  CAS  Google Scholar 

  29. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article  CAS  Google Scholar 

  30. Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018).

    Article  Google Scholar 

  31. Hon, K. et al. Numerical simulation of artificial spin ice for reservoir computing. Appl. Phys. Express 14, 033001 (2021).

    Article  CAS  Google Scholar 

  32. Jensen, J. H., Folven, E. & Tufte, G. Computation in artificial spin ice. In ALIFE 2018: The 2018 Conference on Artificial Life, 15–22 (MIT Press, 2018).

  33. Jensen, J. H. & Tufte, G. Reservoir computing in artificial spin ice. In ALIFE 2020: The 2020 Conference on Artificial Life, 376–383 (MIT Press, 2020).

  34. Welbourne, A. et al. Voltage-controlled superparamagnetic ensembles for low-power reservoir computing. Appl. Phys. Lett. 118, 202402 (2021).

    Article  CAS  Google Scholar 

  35. Yildiz, I. B., Jaeger, H. & Kiebel, S. J. Re-visiting the echo state property. Neural Netw. 35, 1–9 (2012).

    Article  Google Scholar 

  36. Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Article  Google Scholar 

  37. Gartside, J. C. et al. Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nat. Commun. 12, 2488 (2021).

  38. Metlov, K. L. & Guslienko, K. Y. Stability of magnetic vortex in soft magnetic nano-sized circular cylinder. J. Magn. Magn. Mater. 242, 1015–1017 (2002).

    Article  Google Scholar 

  39. Guslienko, K. Y. Magnetic vortex state stability, reversal and dynamics in restricted geometries. J. Nanosci. Nanotechnol. 8, 2745–2760 (2008).

    Article  CAS  Google Scholar 

  40. Talapatra, A., Singh, N. & Adeyeye, A. Magnetic tunability of permalloy artificial spin ice structures. Phys. Rev. Appl. 13, 014034 (2020).

    Article  CAS  Google Scholar 

  41. Gartside, J. C., Burn, D. M., Cohen, L. F. & Branford, W. R. A novel method for the injection and manipulation of magnetic charge states in nanostructures. Sci. Rep. 6, 32864 (2016).

    Article  CAS  Google Scholar 

  42. Nisoli, C. et al. Ground state lost but degeneracy found: the effective thermodynamics of artificial spin ice. Phys. Rev. Lett. 98, 217203 (2007).

    Article  Google Scholar 

  43. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

    Article  CAS  Google Scholar 

  44. Jungfleisch, M. et al. Dynamic response of an artificial square spin ice. Phys. Rev. B 93, 100401 (2016).

    Article  Google Scholar 

  45. Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 53–58 (2018).

    Article  CAS  Google Scholar 

  46. Wang, Y.-L. et al. Rewritable artificial magnetic charge ice. Science 352, 962–966 (2016).

    Article  CAS  Google Scholar 

  47. Chou, K. et al. Direct observation of the vortex core magnetization and its dynamics. Appl. Phys. Lett. 90, 202505 (2007).

    Article  Google Scholar 

  48. Barman, A., Barman, S., Kimura, T., Fukuma, Y. & Otani, Y. Gyration mode splitting in magnetostatically coupled magnetic vortices in an array. J. Phys. D 43, 422001 (2010).

    Article  Google Scholar 

  49. Schultheiss, K. et al. Excitation of whispering gallery magnons in a magnetic vortex. Phys. Rev. Lett. 122, 097202 (2019).

    Article  CAS  Google Scholar 

  50. Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks – with an erratum note (Fraunhofer Institute for Autonomous Intelligent Systems, 2010).

  51. Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).

    Article  Google Scholar 

  52. Atiya, A. F. & Parlos, A. G. New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11, 697–709 (2000).

    Article  CAS  Google Scholar 

  53. Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article  Google Scholar 

  54. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  CAS  Google Scholar 

  55. Burn, D., Chadha, M. & Branford, W. Dynamic dependence to domain wall propagation through artificial spin ice. Phys. Rev. B 95, 104417 (2017).

    Article  Google Scholar 

  56. Pushp, A. et al. Domain wall trajectory determined by its fractional topological edge defects. Nat. Phys. 9, 505–511 (2013).

    Article  CAS  Google Scholar 

  57. Gartside, J. C. et al. Current-controlled nanomagnetic writing for reconfigurable magnonic crystals. Commun. Phys. 3, 219 (2020).

    Article  Google Scholar 

  58. Pancaldi, M., Leo, N. & Vavassori, P. Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale 11, 7656–7666 (2019).

    Article  CAS  Google Scholar 

  59. Gypens, P., Leo, N., Menniti, M., Vavassori, P. & Leliaert, J. Thermoplasmonic nanomagnetic logic gates. Preprint at https://arXiv.org/abs/2110.14212 (2021).

  60. Stenning, K. D. et al. Low power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays. Preprint at https://arXiv.org/abs/2112.00697 (2021).

  61. Bhat, V. et al. Magnon modes of microstates and microwave-induced avalanche in kagome artificial spin ice with topological defects. Phys. Rev. Lett. 125, 117208 (2020).

    Article  CAS  Google Scholar 

  62. Caravelli, F., Chern, G.-W. & Nisoli, C. Artificial spin ice phase-change memory resistors. New J. Phys. 24, 023020 (2022).

    Article  Google Scholar 

  63. Caravelli, F., Iacocca, E., Chern, G.-W., Nisoli, C. & de Araujo, C. I. Anisotropic magnetomemristance. Preprint at https://arXiv.org/abs/2109.05101 (2021).

  64. Vansteenkiste, A. & Van de Wiele, B. MuMax: a new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323, 2585–2591 (2011).

    Article  CAS  Google Scholar 

  65. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  66. Stancil, D. D. & Prabhakar, A. Spin Waves 5 (Springer, 2009).

Download references

Acknowledgements

W.R.B. and J.C.G. were supported by the Leverhulme Trust (RPG-2017-257 to W.R.B.). A.V. was supported by the EPSRC Centre for Doctoral Training in Advanced Characterisation of Materials (grant no. EP/L015277/1). T.D. was supported through a International Research Fellow of the Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research in Japan). The work of F.C. was carried out under the auspices of the NNSA of the US DOE at LANL under contract no. DE-AC52-06NA25396, and with the economic support of the LDRD (grant no. PRD20190195). Simulations were performed at the Imperial College London Research Computing Service (https://doi.org/10.14469/hpc/2232). We thank L. F. Cohen of Imperial College London for enlightening discussion and comments, and D. Mack for excellent laboratory management. We thank B. Rogers, K. Everschor-Sitte and J. Love for valuable discussions regarding the reservoir computation scheme.

Author information

Authors and Affiliations

Authors

Contributions

J.C.G., K.D.S. and A.V. conceived the work. J.C.G. drafted the manuscript, other than the reservoir computation section, with contributions from all authors in the editing and revision stages. K.D.S. drafted the reservoir computation section with editing contributions from J.C.G. J.C.G., K.D.S. and A.V. performed the FMR measurements. J.C.G. and H.H.H. performed the MFM measurements. J.C.G. and K.D.S. fabricated the ASVI. A.V. performed CAD design of the structures. A.V. and J.C.G. performed MOKE measurements of coercive fields. K.D.S. implemented the reservoir computation scheme. T.D. wrote the code for the simulation of the magnon spectra and performed micromagnetic simulations of mode dispersion relations and spatial mode profiles. T.D. performed mode character analysis and identification. D.M.A. wrote the code for the simulation of the magnon spectra. F.C. provided valuable insight into the direction of the reservoir computation scheme. H.K. contributed the analysis of spin-wave dynamics. W.R.B. oversaw the project and provided critical feedback and direction throughout.

Corresponding author

Correspondence to Jack C. Gartside.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Notes 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gartside, J.C., Stenning, K.D., Vanstone, A. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022). https://doi.org/10.1038/s41565-022-01091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01091-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing