Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity

Abstract

Parametric nonlinear optical processes are at the heart of nonlinear optics underpinning the central role in the generation of entangled photons as well as the realization of coherent optical sources. Exciton-polaritons are capable to sustain parametric scattering at extremely low threshold, offering a readily accessible platform to study bosonic fluids. Recently, two-dimensional transition-metal dichalcogenides (TMDs) have attracted great attention in strong light–matter interactions due to robust excitonic transitions and unique spin-valley degrees of freedom. However, further progress is hindered by the lack of realizations of strong nonlinear effects in TMD polaritons. Here, we demonstrate a realization of nonlinear optical parametric polaritons in a WS2 monolayer microcavity pumped at the inflection point and triggered in the ground state. We observed the formation of a phase-matched idler state and nonlinear amplification that preserves the valley population and survives up to room temperature. Our results open a new door towards the realization of the future for all-optical valley polariton nonlinear devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample structure and optical characterization of TMD monolayer microcavity.
Fig. 2: Power dependence of the optical triggered parametric scattering at Δt = 0 ps.
Fig. 3: Polarization properties and temporal dynamics of optical triggered parametric scattering.
Fig. 4: Triggered parametric scattering at room temperature.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the main text and/or the Supplementary Information. Additional data related to this paper may be requested from the authors on reasonable request.

References

  1. Savvidis, P. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547 (2000).

    Article  CAS  Google Scholar 

  2. Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001).

    Article  CAS  Google Scholar 

  3. Roslund, J., De Araujo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics 8, 109–112 (2014).

    Article  CAS  Google Scholar 

  4. Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photonics 8, 937–942 (2014).

    Article  CAS  Google Scholar 

  5. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  CAS  Google Scholar 

  6. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  7. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  CAS  Google Scholar 

  8. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  CAS  Google Scholar 

  9. Zhao, J. et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett. 21, 3331–3339 (2021).

    Article  CAS  Google Scholar 

  10. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  11. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  CAS  Google Scholar 

  12. Leyder, C. et al. Interference of coherent polariton beams in microcavities: polarization-controlled optical gates. Phys. Rev. Lett. 99, 196402 (2007).

    Article  CAS  Google Scholar 

  13. Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article  CAS  Google Scholar 

  14. Marsault, F. et al. Realization of an all optical exciton-polariton router. Appl. Phys. Lett. 107, 201115 (2015).

    Article  CAS  Google Scholar 

  15. Baumberg, J. et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B. 62, R16247 (2000).

    Article  CAS  Google Scholar 

  16. Kundermann, S. et al. Coherent control of polariton parametric scattering in semiconductor microcavities. Phys. Rev. Lett. 91, 107402 (2003).

    Article  CAS  Google Scholar 

  17. Sanvitto, D. et al. Spatial structure and stability of the macroscopically occupied polariton state in the microcavity optical parametric oscillator. Phys. Rev. B. 73, 241308 (2006).

    Article  CAS  Google Scholar 

  18. Christmann, G. et al. Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities. Phys. Rev. B. 82, 113308 (2010).

    Article  CAS  Google Scholar 

  19. Ardizzone, V. et al. Formation and control of turing patterns in a coherent quantum fluid. Sci. Rep. 3, 3016 (2013).

    Article  Google Scholar 

  20. Díaz-Camacho, G., Tejedor, C. & Marchetti, F. Spontaneous patterns in coherently driven polariton microcavities. Phys. Rev. B. 97, 245309 (2018).

    Article  Google Scholar 

  21. Glazov, M. et al. Polariton-polariton scattering in microcavities: a microscopic theory. Phys. Rev. B. 80, 155306 (2009).

    Article  CAS  Google Scholar 

  22. Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6, 527–533 (2010).

    Article  CAS  Google Scholar 

  23. Krizhanovskii, D. et al. Effect of interactions on vortices in a nonequilibrium polariton condensate. Phys. Rev. Lett. 104, 126402 (2010).

    Article  CAS  Google Scholar 

  24. Marchetti, F., Szymańska, M., Tejedor, C. & Whittaker, D. Spontaneous and triggered vortices in polariton optical-parametric-oscillator superfluids. Phys. Rev. Lett. 105, 063902 (2010).

    Article  CAS  Google Scholar 

  25. Xie, W. et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett. 108, 166401 (2012).

    Article  CAS  Google Scholar 

  26. Daskalakis, K., Maier, S., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    Article  CAS  Google Scholar 

  27. Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

    Article  CAS  Google Scholar 

  28. Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    Article  CAS  Google Scholar 

  29. Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article  CAS  Google Scholar 

  30. Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    Article  CAS  Google Scholar 

  31. Wu, J. et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett. 21, 3120–3126 (2021).

    Article  CAS  Google Scholar 

  32. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  33. Wang, Q. H., Kalantar Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  34. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  35. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).

    Article  CAS  Google Scholar 

  36. Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photonics 11, 431–435 (2017).

    Article  CAS  Google Scholar 

  37. Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics 11, 497–501 (2017).

    Article  CAS  Google Scholar 

  38. Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photonics 11, 491–496 (2017).

    Article  CAS  Google Scholar 

  39. Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

    Article  CAS  Google Scholar 

  40. Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).

    Article  CAS  Google Scholar 

  41. Qiu, L., Chakraborty, C., Dhara, S. & Vamivakas, A. Room-temperature valley coherence in a polaritonic system. Nat. Commun. 10, 1513 (2019).

    Article  CAS  Google Scholar 

  42. Trovatello, C. et al. Optical parametric amplification by monolayer transition metal dichalcogenides. Nat. Photonics 15, 6–10 (2021).

    Article  CAS  Google Scholar 

  43. Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13, 906–909 (2018).

    Article  CAS  Google Scholar 

  44. Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light: Sci. Appl. 9, 56 (2020).

    Article  CAS  Google Scholar 

  45. Emmanuele, R. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3286 (2020).

    Article  CAS  Google Scholar 

  46. Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. 10, 021011 (2020).

    Article  CAS  Google Scholar 

  47. Waldherr, M. et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat. Commun. 9, 3286 (2018).

    Article  CAS  Google Scholar 

  48. Gu, J., Chakraborty, B., Khatoniar, M. & Menon, V. M. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol. 14, 1024–1028 (2019).

    Article  CAS  Google Scholar 

  49. Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 2269 (2021).

    Article  CAS  Google Scholar 

  50. Zhang, L. et al. van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article  CAS  Google Scholar 

  51. Rupprecht, C. et al. Micro-mechanical assembly and characterization of high-quality Fabry–Pérot microcavities for the integration of two-dimensional materials. Appl. Phys. Lett. 118, 103103 (2021).

    Article  CAS  Google Scholar 

  52. Liu, X. et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide. Phys. Rev. Lett. 119, 027403 (2017).

    Article  Google Scholar 

  53. Keeling, J. & Berloff, N. G. Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100, 250401 (2008).

    Article  CAS  Google Scholar 

  54. Shelykh, I. et al. Non-linear coupling of polariton and dark exciton states in semiconductor microcavities. Solid State Commun. https://doi.org/10.1016/j.ssc.2005.04.012 (2005).

  55. Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).

    Article  CAS  Google Scholar 

  56. Grosso, G. et al. Nonlinear relaxation and selective polychromatic lasing of confined polaritons. Phys. Rev. B. 90, 045307 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the following funding sources: National Natural Science Foundation of China under grant no. 12020101003 and funding support from State Key Laboratory of Low-Dimensional Quantum Physics of Tsinghua University (Q.X.); Singapore Ministry of Education via the AcRF Tier 3 Programme ‘Geometrical Quantum Materials’ and AcRF Tier 2 project under grant nos. MOE2018-T3-1-002 and MOE2018-T2-2-068 (T.C.H.L.). Ministry of Education, University and Research of Italy via the PRIN project ‘Interacting Photons in Polariton Circuits—INPhoPOL’, FISR-COVID project ‘Wavesense’ and Joint Bilateral Agreement CNR-RFBR (Russian Foundation for Basic Research) project `Hardware implementation of a polariton neural network for neuromorphic computing`, Triennal Program 2021–2023, under grant nos. 2017P9FJBS_001 and FISR2020IP_04324 (D.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.F. and J.Z. conceived the ideas and designed the experiments. J.Z. prepared the monolayer microcavity samples with the help of W.D., R.S., J.F. and Y.L. A.F. and J.Z. carried out the optical spectroscopy measurements and analysed data. R.B. performed the theoretical calculations with the help of K.D. J.Z., A.F., T.C.H.L., D.S. and Q.X. wrote the manuscript with input from all authors. Q.X. supervised the whole project.

Corresponding authors

Correspondence to Antonio Fieramosca or Qihua Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Nathaniel Stern and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Fieramosca, A., Bao, R. et al. Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity. Nat. Nanotechnol. 17, 396–402 (2022). https://doi.org/10.1038/s41565-022-01073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01073-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing