Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Questions about the role of P3HT nanoparticles in retinal stimulation

The Original Article was published on 09 December 2021

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: P3HT-NPs stimulate retinal neurons.
Fig. 2: P3HT-NPs extends the spectral sensitivity of RCS retina.

Data availability

Source data are provided with this paper.

References

  1. Maya-Vetencourt, J. F. et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 15, 698–708 (2020).

    Article  CAS  Google Scholar 

  2. A liquid retinal prosthesis. Nat. Rev. Mat. 5, 559 (2020).

  3. LaVail, M. M. & Battelle, B. A. Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp. Eye Res. 21, 167–192 (1975).

    Article  CAS  Google Scholar 

  4. Trejo, L. J. & Cicerone, C. M. Retinal sensitivity measured by the pupillary light reflex in RCS and albino rats. Vision Res. 22, 1163–1171 (1982).

    Article  CAS  Google Scholar 

  5. Jacobs, G. H., Fenwick, J. A. & Williams, G. A. Cone-based vision of rats for ultraviolet and visible lights. J. Exp. Biol. 204, 2439–2446 (2001).

    Article  CAS  Google Scholar 

  6. Rocha, F. A. et al. Spectral sensitivity measured with electroretinogram using a constant response method. PLoS ONE 11, e0147318 (2016).

    Article  Google Scholar 

  7. Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    Article  CAS  Google Scholar 

  8. Beltramo, R. et al. Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat. Neurosci. 16, 227–234 (2013).

    Article  CAS  Google Scholar 

  9. Campbell, J. et al. Spatially selective photoconductive stimulation of live neurons. Front. Cell Neurosci. 8, 142 (2014).

    Article  Google Scholar 

  10. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).

    Article  CAS  Google Scholar 

  11. Ho, E. et al. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J. Neural Eng. 16, 066027 (2019).

    Article  Google Scholar 

  12. Prévot, P. H. et al. Behavioral responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat. Biomed. Eng. 4, 172–180 (2020).

    Article  Google Scholar 

  13. Martino, N. et al. Photothermal cellular stimulation in functional biopolymer interfaces. Sci. Rep. 5, 8911 (2015).

    Article  CAS  Google Scholar 

  14. Ren, Y.-M., Weng, C. H., Zhao, C. J. & Yin, Z. Q. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats. Int. J. Ophthalmol. 11, 756–765 (2018).

    Google Scholar 

  15. Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    Article  CAS  Google Scholar 

  16. Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4, 1980 (2013).

    Article  Google Scholar 

  17. Lanzani, G. The Photophysics behind Photovoltaics and Photonics (Wiley-VCH Verlag & Co., 2012).

  18. Sacco, R., Guidoboni, G. & Mauri A. G. A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences (Academic, 2019).

  19. Palanker, D., Głowacki, E. D. & Ghezzi, D. Questions about the role of P3HT nanoparticles in retinal stimulation. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-01044-6 (2021).

  20. Lin, B., Masland, R. H. & Strettoi, E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp. Eye Res. 88, 589–599 (2009).

    Article  CAS  Google Scholar 

  21. Werginz, P., Benav, H., Zrenner, E. & Rattay, F. Modeling the response of on and off retinal bipolar cells during electric stimulation. Vision Res. 111, 170–181 (2015).

    Article  CAS  Google Scholar 

  22. Lorach, H. et al. Long-term rescue of photoreceptors in a rodent model of retinitis pigmentosa associated with MERTK mutation. Sci. Rep. 8, 11312 (2018).

    Article  CAS  Google Scholar 

  23. Pu, M., Xu, L. & Zhang, H. Visual response properties of retinal ganglion cells in the Royal College of Surgeons dystrophic rat. Invest. Ophthalmol. Vis. Sci. 47, 3579–3585 (2006).

    Article  Google Scholar 

  24. McGill, T. J., Douglas, R. M., Lund, R. D. & Prusky, G. T. Quantification of spatial vision in the Royal College of Surgeons rat. Invest. Ophthalmol. Vis. Sci. 45, 932–936 (2004).

    Article  Google Scholar 

  25. Benfenati, F. & Lanzani, G. Clinical translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).

    Article  Google Scholar 

  26. Rommelfanger, N. J. & Hong, G. Conjugated polymers enable a liquid retina prosthesis. Trends Chem. 2, 961–964 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research on NPs was supported by Fondazione Cariplo (project 2018-0505), H2020-MSCA-ITN 2019 ‘Entrain Vision’ (project 861423) and EuroNanoMed3 (project 2019-132).

Author information

Authors and Affiliations

Authors

Contributions

F.B. and G.L. co-wrote the letter on behalf of all the authors of the original article.

Corresponding author

Correspondence to Fabio Benfenati.

Ethics declarations

Competing interests

G.L. and F.B. are consultants of Novavido Srl, a company that develops organic retinal prostheses. The P3HT-NP technology is the subject of US patent application US 16/005,248 ‘Eye-injectable polymeric nanoparticles and method of use therefor’ by Istituto Italiano di Tecnologia and Ospedale Sacrocuore Don Calabria, which is licensed to Novavido Srl.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benfenati, F., Lanzani, G. Reply to: Questions about the role of P3HT nanoparticles in retinal stimulation. Nat. Nanotechnol. 16, 1333–1336 (2021). https://doi.org/10.1038/s41565-021-01043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01043-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing