Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying

Abstract

Converting CO2 emissions, powered by renewable electricity, to produce fuels and chemicals provides an elegant route towards a carbon-neutral energy cycle. Progress in the understanding and synthesis of Cu catalysts has spurred the explosive development of electrochemical CO2 reduction (CO2RR) technology to produce hydrocarbons and oxygenates; however, Cu, as the predominant catalyst, often exhibits limited selectivity and activity towards a specific product, leading to low productivity and substantial post-reaction purification. Here, we present a single-atom Pb-alloyed Cu catalyst (Pb1Cu) that can exclusively (~96% Faradaic efficiency) convert CO2 into formate with high activity in excess of 1 A cm–2. The Pb1Cu electrocatalyst converts CO2 into formate on the modulated Cu sites rather than on the isolated Pb. In situ spectroscopic evidence and theoretical calculations revealed that the activated Cu sites of the Pb1Cu catalyst regulate the first protonation step of the CO2RR and divert the CO2RR towards a HCOO* path rather than a COOH* path, thus thwarting the possibility of other products. We further showcase the continuous production of a pure formic acid solution at 100 mA cm–2 over 180 h using a solid electrolyte reactor and Pb1Cu.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structural characterization of the Pb1Cu catalyst.
Fig. 2: CO2RR performance over in situ formed Pb1Cu SAAs.
Fig. 3: Mechanistic studies of the electrochemical CO2-to-formate conversion on Pb1Cu.
Fig. 4: Theoretical calculations.

Data availability

All data that support the findings of this study are available in the main text, figures and Supplementary Information, or from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. 1.

    Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    CAS  Article  Google Scholar 

  3. 3.

    Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Spurgeon, J. M. & Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Chen, C., Kotyk, J. F. K. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Lu, X., Leung, D. Y., Wang, H., Leung, M. K. & Xuan, J. Electrochemical reduction of carbon dioxide to formic acid. ChemElectroChem 1, 836–849 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Zheng, X. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 794–805 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Zheng, X. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2, 55–61 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Yang, F. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 11, 1088 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Shi, Y. et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3145 (2020).

    Article  CAS  Google Scholar 

  12. 12.

    Kang, X. et al. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal–organic frameworks. J. Am. Chem. Soc. 142, 17384–17392 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    De Arquer, F. P. G. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm–2. Science 367, 661–666 (2020).

    Article  CAS  Google Scholar 

  14. 14.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Lv, J. J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, 1803111 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Cuenya, B. R. The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020).

    Article  CAS  Google Scholar 

  17. 17.

    Xu, H. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    CAS  Article  Google Scholar 

  18. 18.

    Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Li, J. et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 142, 7276–7282 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Tao, Z., Wu, Z., Wu, Y. & Wang, H. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 10, 9271–9275 (2020).

    CAS  Article  Google Scholar 

  21. 21.

    Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Feaster, J. T. et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, X. et al. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 10, 5812 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Yang, M. et al. Identifying phase-dependent electrochemical stripping performance of FeOOH nanorod: evidence from kinetic simulation and analyte–material interactions. Small 16, 1906830 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    Moradzaman, M. & Mul, G. Infrared analysis of interfacial phenomena during electrochemical reduction of CO2 over polycrystalline copper electrodes. ACS Catal. 10, 8049–8057 (2020).

    CAS  Article  Google Scholar 

  32. 32.

    Kim, C. et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Li, Y. et al. Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nat. Commun. 11, 6190 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Hossain, M. N., Wen, J., Konda, S. K., Govindhan, M. & Chen, A. Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film. Electrochem. Commun. 82, 16–20 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Ye, K. et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci. Bull. 65, 711–719 (2020).

    CAS  Article  Google Scholar 

  37. 37.

    Li, Z. et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv. Mater. 33, 2005113 (2020).

    Article  CAS  Google Scholar 

  38. 38.

    Chan, K. & Nørskov, J. K. Potential dependence of electrochemical barriers from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Guo, C., Fu, X. & Xiao, J. Theoretical insights on the synergy and competition between thermochemical and electrochemical steps in oxygen electroreduction. J. Phys. Chem. C. 124, 25796–25804 (2020).

    CAS  Article  Google Scholar 

  41. 41.

    Li, H., Guo, C., Fu, Q. & Xiao, J. Toward fundamentals of confined electrocatalysis in nanoscale reactors. J. Phys. Chem. Lett. 10, 533–539 (2019).

    Article  CAS  Google Scholar 

  42. 42.

    Guo, C., Mao, Y., Yao, Z., Chen, J. & Hu, P. Examination of the key issues in microkinetics: CO oxidation on Rh(1 1 1). J. Catal. 379, 52–59 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Chen, J.-F., Mao, Y., Wang, H.-F. & Hu, P. Reversibility iteration method to understand reaction networks and to solve micro-kinetics in heterogeneous catalysis. ACS Catal. 6, 7078–7087 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

C.X. acknowledges the University of Electronic Science and Technology of China (UESTC) for startup funding (A1098531023601264) and the NSFC (22102018 and 52171201). J.Z. acknowledges the National Key Research and Development Program of China (2019YFA0405600), the National Science Fund for Distinguished Young Scholars (21925204), the NSFC (U19A2015), the Fundamental Research Funds for the Central Universities, the Provincial Key Research and Development Program of Anhui (202004a05020074), the DNL Cooperation Fund, CAS (DNL202003) and the USTC Research Funds of the Double First-Class Initiative (YD2340002002). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. J.X. acknowledges the Ministry of Science and Technology of China (2018YFA0704503), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36030200), the NSFC (91845103), the DNL Cooperation Fund, CAS (DNL202003) and the LiaoNing Revitalization Talents Program (XLYC1907099). T.Z. acknowledges the China Postdoctoral Science Foundation (2019TQ0300 and 2020M671890) and the NSFC (22005291). A.L. acknowledges the Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). The authors thank Beijing Synchrotron Radiation Facility (beam line BL1W1B) and Taiwan Photon Source (beamline 44A) for providing beam time.

Author information

Affiliations

Authors

Contributions

The project was conceptualized by C.X. and J.Z. and supervised by J.Z., C.X. and J.X. T.Z. and C.L. prepared the catalysts and performed the catalytic tests. T.Z., M.Z., Q.J. and W.X. performed the catalyst characterizations. A.L. conducted the HAADF-STEM characterizations. C.G. and J.X. carried out the DFT calculations. C.-W.P. performed the ex situ EXAFS measurements. C.L., X.L. and H.L. carried out the in situ measurements. T.Z., C.X. and J.Z. wrote the paper with the input from all authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jianping Xiao, Chuan Xia or Jie Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Miao Zhong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41 and Tables 1–9.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Liu, C., Guo, C. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00974-5

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research