Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of superdiffusive phonon transport in aligned atomic chains


Fascinating phenomena can occur as charge and/or energy carriers are confined in one dimension1,2,3,4. One such example is the divergent thermal conductivity (κ) of one-dimensional lattices, even in the presence of anharmonic interatomic interactions—a direct consequence of the Fermi–Pasta–Ulam–Tsingou paradox proposed in 19555. This length dependence of κ, also known as superdiffusive phonon transport, presents a classical anomaly of continued interest6,7,8,9. So far the concept has remained purely theoretical, because isolated single atomic chains of sufficient length have been experimentally unattainable. Here we report on the observation of a length-dependent κ extending over 42.5 µm at room temperature for ultrathin van der Waals crystal NbSe3 nanowires. We found that κ follows a 1/3 power law with wire length, which provides experimental evidence pointing towards superdiffusive phonon transport. Contrary to the classical size effect due to phonon-boundary scattering, the observed κ shows a 25-fold enhancement as the characteristic size of the nanowires decreases from 26 to 6.8 nm while displaying a normal–superdiffusive transition. Our analysis indicates that these intriguing observations stem from the transport of one-dimensional phonons excited as a result of elastic stiffening with a fivefold enhancement of Young’s modulus. The persistent divergent trend of the observed thermal conductivity with sample length reveals a real possibility of creating novel van der Waals crystal-based thermal superconductors with κ values higher than those of any known materials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystalline structure of NbSe3 and experimental set-up for thermal/electrical measurements.
Fig. 2: Divergent and superdiffusive transport of 1D phonons.
Fig. 3: Elastic stiffening and normal–scattering-dominated phonon transport.

Data availability

Data are available from figshare at

Code availability

The code that has been used for this work is available from the corresponding author on request.


  1. 1.

    Bockrath, M. W. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Cui, L. et al. Quantized thermal transport in single-atom junctions. Science 355, 1192–1195 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Meier, T. et al. Length-dependent thermal transport along molecular chains. Phys. Rev. Lett. 113, 060801 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Fermi, E., Pasta, J. & Ulam, S. Studies of Nonlinear Problems Report No. LA1940 (Los Alamos Science Laboratory, 1955).

  6. 6.

    Lepri, S., Livi, R. & Politi, A. On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43, 271–276 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Narayan, O. & Ramaswamy, S. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002).

    Article  Google Scholar 

  8. 8.

    Livi, R. & Lepri, S. Thermal physics: heat in one dimension. Nature 421, 327 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Boh, J. Thermal Transport in Low Dimensions: from Statistical Physics to Nanoscale Heat Transfer (Springer Nature, 2016).

  10. 10.

    Lepri, S., Livi, R. & Politi, A. Universality of anomalous one-dimensional heat conductivity. Phys. Rev. E 68, 8–11 (2003).

    Article  Google Scholar 

  11. 11.

    Wang, J. S. & Li, B. Intriguing heat conduction of a chain with transverse motions. Phys. Rev. Lett. 92, 074302 (2004).

    Article  Google Scholar 

  12. 12.

    Delfini, L., Lepri, S., Livi, R. & Politi, A. Anomalous kinetics and transport from 1D self-consistent mode-coupling theory. J. Stat. Mech. Theory Exp. 2007, 1742–5468 (2007).

    Article  Google Scholar 

  13. 13.

    Liu, J., Li, T., Hu, Y. & Zhang, X. Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs. Nanoscale 9, 1496–1501 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Lee, V., Wu, C. H., Lou, Z. X., Lee, W. L. & Chang, C. W. Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes. Phys. Rev. Lett. 118, 135901 (2017).

    Article  Google Scholar 

  15. 15.

    Li, Q.-Y., Takahashi, K. & Zhang, X. Comment on “Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes”. Phys. Rev. Lett. 119, 179601 (2017).

    Article  Google Scholar 

  16. 16.

    Li, Q. Y. Response to “Reply to comment on ‘Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes’”. Preprint at (2017).

  17. 17.

    Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Fugallo, G. et al. Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14, 6109–6114 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Zhou, Y., Zhang, X. & Hu, M. Nonmonotonic diameter dependence of thermal conductivity of extremely thin Si nanowires: competition between hydrodynamic phonon flow and boundary scattering. Nano Lett. 17, 1269–1276 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Ong, N. P. & Monceau, P. Anomalous transport properties of a linear-chain metal: NbSe3. Phys. Rev. B 16, 3443–3455 (1977).

    CAS  Article  Google Scholar 

  22. 22.

    Yang, L. et al. Distinct signatures of electron–phonon coupling observed in the lattice thermal conductivity of NbSe3 nanowires. Nano Lett. 19, 415–421 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat. Transf. 125, 881–888 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Wingert, M. C., Chen, Z. C. Y., Kwon, S., Xiang, J. & Chen, R. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Rev. Sci. Instrum. 83, 024901 (2012).

    Article  Google Scholar 

  25. 25.

    Hsiao, T.-K. et al. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires. Nat. Nanotechnol. 8, 534–538 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, Q. et al. Thermal transport in quasi-1D van der Waals crystal Ta2Pd3Se8 nanowires: size and length dependence. ACS Nano 12, 2634–2642 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Vakulov, D. et al. Ballistic phonons in ultrathin nanowires. Nano Lett. 20, 2703–2709 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Mingo, N. & Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the ‘problem of long waves’. Nano Lett. 5, 1221–1225 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Pop, E., Mann, D., Wang, Q., Goodson, K. & Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973).

    CAS  Article  Google Scholar 

  31. 31.

    Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. & Yan, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Cuenot, S., Frétigny, C., Demoustier-Champagne, S. & Nysten, B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004).

    Article  Google Scholar 

  33. 33.

    Brill, J. W. & Ong, N. P. Young’s modulus of NbSe3. Solid State Commun. 25, 1075–1078 (1978).

    CAS  Article  Google Scholar 

  34. 34.

    Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  38. 38.

    Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Feng, T. & Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 93, 045202 (2016).

    Article  Google Scholar 

  40. 40.

    Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013).

    CAS  Article  Google Scholar 

Download references


We thank the National Science Foundation (NSF) for financial support under grants DMR-1532107 and CBET-1805924. The financial support for sample preparation was provided by the National Science Foundation through the Penn State 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP) under National Science Foundation cooperative agreement DMR-1539916. Z.M. acknowledges support from the National Science Foundation under grant DMR-1917579. This work was performed in part at the Cornell NanoScale Facility, a National Nanotechnology Coordinated Infrastructure (NNCI) member supported by NSF grant NNCI-2025233.

Author information




L.Y. conducted the transport property and Young’s modulus measurements. Y.T. and L.Y. performed the theoretical simulation. L.Y. and Z.P. performed sample preparation for the TEM studies. Y. Zhao and L.Y. fabricated the measurement microdevices. Y. Zhu and Z.M. synthesized the material. M.A. and K.W. performed the TEM characterizations. L.Y. and D.L. compiled and analysed the results. D.L. conceived and directed the project. L.Y. and D.L. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Deyu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Bernd Gotsmann, Yongjie Hu and Dvira Segal for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and Notes 1–10.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Tao, Y., Zhu, Y. et al. Observation of superdiffusive phonon transport in aligned atomic chains. Nat. Nanotechnol. 16, 764–768 (2021).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research