Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy

Abstract

Current technologies to measure drug–target interactions require complex processing and invasive tissue biopsies, limiting their clinical utility for cancer treatment monitoring. Here we develop an analytical platform that leverages circulating extracellular vesicles (EVs) for activity-based assessment of tumour-specific drug–target interactions in patient blood samples. The technology, termed extracellular vesicle monitoring of small-molecule chemical occupancy and protein expression (ExoSCOPE), utilizes bio-orthogonal probe amplification and spatial patterning of molecular reactions within matched plasmonic nanoring resonators to achieve in situ analysis of EV drug dynamics. It measures changes in drug occupancy and protein composition in molecular subpopulations of EVs. When used to monitor various targeted therapies, the ExoSCOPE revealed EV signatures that closely reflected cellular treatment efficacy. We further applied the technology for clinical cancer diagnostics and treatment monitoring. Using a small volume of blood, the ExoSCOPE accurately classified disease status and rapidly distinguished between targeted treatment outcomes, within 24 h after treatment initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ExoSCOPE for activity-based analysis of EV drug dynamics.
Fig. 2: Design and evaluation of click probes.
Fig. 3: Multiparametric analysis of EV drug occupancy.
Fig. 4: Multiplexed ExoSCOPE for longitudinal drug analysis.
Fig. 5: Clinical profiling of lung cancer patients.

Similar content being viewed by others

Data availability

Full gels and blots shown in Fig. 2c and Supplementary Figs. 1b,d,e; 8a,b; 13c,e; and 16a are provided as a source data file at https://doi.org/10.6084/m9.figshare.13565096. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Code used for the statistical analyses is available on reasonable request.

References

  1. Moscow, J. A., Fojo, T. & Schilsky, R. L. The evidence framework for precision cancer medicine. Nat. Rev. Clin. Oncol. 15, 183–192 (2018).

    Article  Google Scholar 

  2. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  Google Scholar 

  3. Litière, S., Collette, S., de Vries, E. G., Seymour, L. & Bogaerts, J. RECIST—learning from the past to build the future. Nat. Rev. Clin. Oncol. 14, 187–192 (2017).

    Article  Google Scholar 

  4. Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

    Article  CAS  Google Scholar 

  5. Jonas, O. et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci. Transl. Med. 7, 284ra57 (2015).

    Article  Google Scholar 

  6. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  Google Scholar 

  7. Jones, L. H. & Neubert, H. Clinical chemoproteomics—opportunities and obstacles. Sci. Transl. Med. 9, eaaf7951 (2017).

    Article  Google Scholar 

  8. Gerry, C. J. & Schreiber, S. L. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat. Rev. Drug Discov. 17, 333–352 (2018).

    Article  CAS  Google Scholar 

  9. Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118, 1917–1950 (2018).

    Article  CAS  Google Scholar 

  10. Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  Google Scholar 

  11. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  Google Scholar 

  12. Minciacchi, V. R., Freeman, M. R. & Di Vizio, D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. 40, 41–51 (2015).

    Article  CAS  Google Scholar 

  13. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  Google Scholar 

  14. Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 18, 1835–1840 (2012).

    Article  CAS  Google Scholar 

  15. Choi, D. S., Kim, D. K., Kim, Y. K. & Gho, Y. S. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom. Rev. 34, 474–490 (2015).

    Article  CAS  Google Scholar 

  16. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  Google Scholar 

  17. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  Google Scholar 

  18. Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    Article  CAS  Google Scholar 

  19. Wang, Z. et al. Dual-selective magnetic analysis of extracellular vesicle glycans. Matter 2, 150–166 (2020).

    Article  Google Scholar 

  20. Tan, X., Lambert, P. F., Rapraeger, A. C. & Anderson, R. A. Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications. Trends Cell Biol. 26, 352–366 (2016).

    Article  CAS  Google Scholar 

  21. Xin, H., Namgung, B. & Lee, L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 3, 228–243 (2018).

    Article  CAS  Google Scholar 

  22. Ligler, F. S. & Gooding, J. J. Lighting up biosensors: now and the decade to come. Anal. Chem. 91, 8732–8738 (2019).

    Article  CAS  Google Scholar 

  23. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    Article  CAS  Google Scholar 

  24. Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

    Article  CAS  Google Scholar 

  25. Patterson, D. M., Nazarova, L. A. & Prescher, J. A. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9, 592–605 (2014).

    Article  CAS  Google Scholar 

  26. Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  Google Scholar 

  27. Rutkowska, A. et al. A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level. ACS Chem. Biol. 11, 2541–2550 (2016).

    Article  CAS  Google Scholar 

  28. Shao, H. et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 6, 6999 (2015).

    Article  CAS  Google Scholar 

  29. Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    Article  CAS  Google Scholar 

  30. Lim, C. Z. J. et al. Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat. Commun. 10, 1144 (2019).

    Article  Google Scholar 

  31. Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Disco. 4, 1046–1061 (2014).

    Article  CAS  Google Scholar 

  32. Sandfeld-Paulsen, B. et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol. Oncol. 10, 1595–1602 (2016).

    Article  CAS  Google Scholar 

  33. Hirsch, F. R. et al. Lung cancer: current therapies and new targeted treatments. Lancet 389, 299–311 (2017).

    Article  CAS  Google Scholar 

  34. Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).

    Article  CAS  Google Scholar 

  35. Wagner, J. A. Strategic approach to fit-for-purpose biomarkers in drug development. Annu. Rev. Pharmacol. Toxicol. 48, 631–651 (2008).

    Article  CAS  Google Scholar 

  36. Tuntland, T. et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharm. 5, 174 (2014).

    Article  Google Scholar 

  37. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  Google Scholar 

  38. Meehan, B., Rak, J. & Di Vizio, D. Oncosomes—large and small: what are they, where they came from? J. Extracell. Vesicles 5, 33109 (2016).

    Article  Google Scholar 

  39. Schreiber, C. L. & Smith, B. D. Molecular conjugation using non-covalent click chemistry. Nat. Rev. Chem. 3, 393–400 (2019).

    Article  CAS  Google Scholar 

  40. Ho, N. R. Y. et al. Visual and modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes. Nat. Commun. 9, 3238 (2018).

    Article  Google Scholar 

  41. Sundah, N. R. et al. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nat. Biomed. Eng. 3, 684–694 (2019).

    Article  CAS  Google Scholar 

  42. Gooding, J. J. & Gaus, K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 55, 11354–11366 (2016).

    Article  CAS  Google Scholar 

  43. Wu, X. et al. Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6, eaba2556 (2020).

    Article  CAS  Google Scholar 

  44. Lim, C. Z. J., Natalia, A., Sundah, N. R. & Shao, H. Biomarker organization in circulating extracellular vesicles: new applications in detecting neurodegenerative diseases. Adv. Biosyst. 4, e1900309 (2020).

    Article  Google Scholar 

  45. Lim, C. Z. J., Zhang, L., Zhang, Y., Sundah, N. R. & Shao, H. New sensors for extracellular vesicles: insights on constituent and associated biomarkers. ACS Sens. 5, 4–12 (2020).

    Article  CAS  Google Scholar 

  46. Borrebaeck, C. A. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 17, 199–204 (2017).

    Article  CAS  Google Scholar 

  47. Yeh, E. C. et al. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 3, e1501645 (2017).

    Article  Google Scholar 

  48. Yelleswarapu, V. et al. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc. Natl Acad. Sci. USA 116, 4489–4495 (2019).

    Article  CAS  Google Scholar 

  49. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  Google Scholar 

  50. Bianco, G., Forli, S., Goodsell, D. S. & Olson, A. J. Covalent docking using AutoDock: two-point attractor and flexible side chain methods. Protein Sci. 25, 295–301 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. B. S. Mohamed and S. S. Chen for assistance with clinical sample collection and the National University Hospital Tissue Repository for providing the clinical samples and de-identified patient health information. Funding: this work was supported in part by funding from the National University of Singapore (NUS), NUS Research Scholarship, Ministry of Education, National Medical Research Council, Institute for Health Innovation & Technology, IMCB Independent Fellowship and NUS Early Career Research Award.

Author information

Authors and Affiliations

Authors

Contributions

S.P., Y.Z. and H.S. designed the study. S.P., Y.Z., A.N., C.Z.J.L. and N.R.Y.H. performed the research. B.C., T.P.L. and J.K.C.T. provided the de-identified clinical samples and health information. S.P., Y.Z., A.N. and H.S. analysed the data and wrote the manuscript. All the authors contributed to the manuscript.

Corresponding author

Correspondence to Huilin Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks John Gooding, Matt Trau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Table 1 and methods.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Zhang, Y., Natalia, A. et al. Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. Nat. Nanotechnol. 16, 734–742 (2021). https://doi.org/10.1038/s41565-021-00872-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00872-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research